login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143067
Expansion of psi(-x^3) / f(-x^4) in powers of x where psi(), f() are Ramanujan theta functions.
3
1, 0, 0, -1, 1, 0, 0, -1, 2, -1, 0, -2, 3, -1, 0, -3, 5, -2, 1, -5, 7, -3, 1, -7, 11, -5, 2, -11, 15, -7, 4, -15, 22, -11, 6, -22, 30, -15, 9, -30, 42, -22, 14, -42, 56, -31, 20, -56, 77, -43, 29, -77, 101, -58, 41, -101, 135, -80, 57, -135, 176, -106, 78
OFFSET
0,9
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
REFERENCES
Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 41, 11th equation.
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of f(x, x^5) / f(x, x^3) in powers of x where f(, ) is Ramanujan's general theta function.
Expansion of q^(-5/24) * eta(q^3) * eta(q^12) / (eta(q^4) * eta(q^6)) in powers of q.
Euler transform of period 12 sequence [ 0, 0, -1, 1, 0, 0, 0, 1, -1, 0, 0, 0, ...].
G.f.: (1 + x + x^5 + x^8 + x^16 + x^21 + ...) / (1 + x + x^3 + x^6 + x^10 + ...). [Ramanujan]
G.f.: 1 - x^3 * (1 - x) / (1 - x^4) + x^8 * (1 - x) * (1 - x^3) / ((1 - x^4) * (1 - x^8)) - ... [Ramanujan]
a(2*n) = A262064(n). a(2*n + 3) = - A262090(n).
Convolution of A089801 and A106507. - Michael Somos, Jan 10 2017
EXAMPLE
G.f. = 1 - x^3 + x^4 - x^7 + 2*x^8 - x^9 - 2*x^11 + 3*x^12 - x^13 - 3*x^15 + ...
G.f. = q^5 - q^77 + q^101 - q^173 + 2*q^197 - q^221 - 2*q^269 + 3*q^293 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QHypergeometricPFQ[ {x}, {-x^2}, x^2, x^3], {x, 0, n}]; (* Michael Somos, Sep 07 2015 *)
a[ n_] := SeriesCoefficient[ 2^(-1/2) x^(-3/8) EllipticTheta[ 2, Pi/4, x^(3/2)] / QPochhammer[ x^4], {x, 0, n}]; (* Michael Somos, Sep 07 2015 *)
a[ n_] := SeriesCoefficient[ x^(-5/24) (EllipticTheta[ 3, 0, x^(1/3)] - EllipticTheta[ 3, 0, x^3]) / EllipticTheta[ 2, 0, x^(1/2)], {x, 0, n}]; (* Michael Somos, Jan 10 2017 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^3 + A) * eta(x^12 + A) / (eta(x^4 + A) * eta(x^6 + A)), n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Jul 21 2008
STATUS
approved