login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A262090
Expansion of f(x^3, x^21) / f(-x^2, -x^4) where f(, ) is the Ramanujan general theta function.
2
1, 0, 1, 1, 2, 1, 3, 2, 5, 3, 7, 5, 11, 7, 15, 11, 22, 15, 30, 22, 42, 31, 56, 43, 77, 58, 101, 80, 135, 106, 177, 142, 232, 187, 299, 246, 388, 319, 495, 415, 634, 532, 803, 683, 1017, 869, 1277, 1103, 1605, 1390, 2000, 1751, 2492, 2189, 3087, 2733, 3819
OFFSET
0,5
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Euler transform of period 48 sequence [ 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, ...].
a(n) = - A143067(2*n + 3).
EXAMPLE
G.f. = 1 + x^2 + x^3 + 2*x^4 + x^5 + 3*x^6 + 2*x^7 + 5*x^8 + 3*x^9 + ...
G.f. = q^77 + q^173 + q^221 + 2*q^269 + q^317 + 3*q^365 + 2*q^413 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ -x^3, x^24] QPochhammer[ -x^21, x^24] QPochhammer[ x^24] / QPochhammer[ x^2], {x, 0, n}];
PROG
(PARI) {a(n) = if( n<0, 0, A = x * O(x^n); polcoeff( subst( prod(k=1, n\3, 1 - x^k * [1, 1, 0, 0, 0, 0, 0, 1][k%8 + 1], 1 + x * O(x^(n\3))), x, -x^3) / eta(x^2 + x * O(x^n)), n))};
CROSSREFS
Cf. A143067.
Sequence in context: A008731 A114209 A132091 * A239881 A051792 A053602
KEYWORD
nonn
AUTHOR
Michael Somos, Sep 10 2015
STATUS
approved