OFFSET
0,4
COMMENTS
A strict partition is one in which every part has multiplicity 1.
a(n) = Sum_{k=-1..1} A240021(n,k). - Alois P. Heinz, Apr 02 2014
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000
EXAMPLE
a(12) counts these 9 partitions: [12], [9,2,1], [3,8,1], [7,4,1], [7,2,3], [5,6,1], [6,3,2,1], [5,4,3], [5,4,1,2].
MATHEMATICA
d[n_] := Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &];
p[n_] := p[n] = Select[d[n], Abs[Count[#, _?OddQ] - Count[#, _?EvenQ]] <= 1 &]; t = Table[p[n], {n, 0, 12}]
TableForm[t] (* shows the partitions *)
u = Table[Length[p[n]], {n, 0, 60}] (* A239880 *)
(* Peter J. C. Moses, Mar 10 2014 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Mar 29 2014
STATUS
approved