login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A131084
A129686 * A007318. Riordan triangle (1+x, x/(1-x)).
3
1, 1, 1, 0, 2, 1, 0, 2, 3, 1, 0, 2, 5, 4, 1, 0, 2, 7, 9, 5, 1, 0, 2, 9, 16, 14, 6, 1, 0, 2, 11, 25, 30, 20, 7, 1, 0, 2, 13, 36, 55, 50, 27, 8, 1, 0, 2, 15, 49, 91, 105, 77, 35, 9, 1
OFFSET
1,5
COMMENTS
Row sums = A098011 starting (1, 2, 3, 6, 12, 24, 48, ...). A131085 = A007318 * A129686
Riordan array (1+x, x/(1-x)). - Philippe Deléham, Mar 02 2012
FORMULA
A129686(signed): (1,1,1,...) in the main diagonal and (-1,-1,-1, ...) in the subsubdiagonal); * A007318, Pascal's triangle; as infinite lower triangular matrices.
exp(x) * e.g.f. for row n = e.g.f. for diagonal n. For example, for n = 3 we have exp(x)*(2*x + 3*x^2/2! + x^3/3!) = 2*x + 7*x^2/2! + 16*x^3/3! + 30*x^4/4! + .... The same property holds more generally for Riordan arrays of the form ( f(x), x/(1 - x) ). - Peter Bala, Dec 22 2014
G.f. column k: (1+x)*(x/(1-x))^k, k >= 0. (Riordan property). - Wolfdieter Lang, Jan 06 2015
T(n, 0) = 1 if n=0 or n=1 else 0; T(n, k) = binomial(n-1,k-1) + binomial(n-2,k-1)*[n-1 >= k] if n >= k >= 1, where [S] = 1 if S is true, else 0, and T(n, k) = 0 if n < k. - Wolfdieter Lang, Jan 08 2015
EXAMPLE
The triangle T(n, k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 10 ...
0: 1
1: 1 1
2: 0 2 1
3: 0 2 3 1
4: 0 2 5 4 1
5: 0 2 7 9 5 1
6: 0 2 9 16 14 6 1
7: 0 2 11 25 30 20 7 1
8: 0 2 13 36 55 50 27 8 1
9: 0 2 15 49 91 105 77 35 9 1
10: 0 2 17 64 140 196 182 112 44 10 1
... Reformatted. - Wolfdieter Lang, Jan 06 2015
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Jun 14 2007
EXTENSIONS
Edited: Added Riordan property (see Philippe Deléham comment) in name. - Wolfdieter Lang, Jan 06 2015
STATUS
approved