login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A129686 * A007318. Riordan triangle (1+x, x/(1-x)).
3

%I #19 Feb 26 2022 09:20:33

%S 1,1,1,0,2,1,0,2,3,1,0,2,5,4,1,0,2,7,9,5,1,0,2,9,16,14,6,1,0,2,11,25,

%T 30,20,7,1,0,2,13,36,55,50,27,8,1,0,2,15,49,91,105,77,35,9,1

%N A129686 * A007318. Riordan triangle (1+x, x/(1-x)).

%C Row sums = A098011 starting (1, 2, 3, 6, 12, 24, 48, ...). A131085 = A007318 * A129686

%C Riordan array (1+x, x/(1-x)). - _Philippe Deléham_, Mar 02 2012

%F A129686(signed): (1,1,1,...) in the main diagonal and (-1,-1,-1, ...) in the subsubdiagonal); * A007318, Pascal's triangle; as infinite lower triangular matrices.

%F exp(x) * e.g.f. for row n = e.g.f. for diagonal n. For example, for n = 3 we have exp(x)*(2*x + 3*x^2/2! + x^3/3!) = 2*x + 7*x^2/2! + 16*x^3/3! + 30*x^4/4! + .... The same property holds more generally for Riordan arrays of the form ( f(x), x/(1 - x) ). - _Peter Bala_, Dec 22 2014

%F G.f. column k: (1+x)*(x/(1-x))^k, k >= 0. (Riordan property). - _Wolfdieter Lang_, Jan 06 2015

%F T(n, 0) = 1 if n=0 or n=1 else 0; T(n, k) = binomial(n-1,k-1) + binomial(n-2,k-1)*[n-1 >= k] if n >= k >= 1, where [S] = 1 if S is true, else 0, and T(n, k) = 0 if n < k. - _Wolfdieter Lang_, Jan 08 2015

%e The triangle T(n, k) begins:

%e n\k 0 1 2 3 4 5 6 7 8 9 10 ...

%e 0: 1

%e 1: 1 1

%e 2: 0 2 1

%e 3: 0 2 3 1

%e 4: 0 2 5 4 1

%e 5: 0 2 7 9 5 1

%e 6: 0 2 9 16 14 6 1

%e 7: 0 2 11 25 30 20 7 1

%e 8: 0 2 13 36 55 50 27 8 1

%e 9: 0 2 15 49 91 105 77 35 9 1

%e 10: 0 2 17 64 140 196 182 112 44 10 1

%e ... Reformatted. - _Wolfdieter Lang_, Jan 06 2015

%Y Cf. A007318, A129686, A098011, A131085.

%Y Cf. A029653, A131084, A208510.

%K nonn,tabl

%O 1,5

%A _Gary W. Adamson_, Jun 14 2007

%E Edited: Added Riordan property (see Philippe Deléham comment) in name. - _Wolfdieter Lang_, Jan 06 2015