login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A104402
Matrix inverse of triangle A091491, read by rows.
4
1, -1, 1, 1, -2, 1, 0, 2, -3, 1, 0, -1, 4, -4, 1, 0, 0, -3, 7, -5, 1, 0, 0, 1, -7, 11, -6, 1, 0, 0, 0, 4, -14, 16, -7, 1, 0, 0, 0, -1, 11, -25, 22, -8, 1, 0, 0, 0, 0, -5, 25, -41, 29, -9, 1, 0, 0, 0, 0, 1, -16, 50, -63, 37, -10, 1, 0, 0, 0, 0, 0, 6, -41, 91, -92, 46, -11, 1, 0, 0, 0, 0, 0, -1, 22, -91, 154, -129, 56, -12, 1
OFFSET
0,5
COMMENTS
Row sums are all 0's for n>0. Absolute row sums form 2*A000045(n+1) for n>0, where A000045 = Fibonacci numbers. Sums of squared terms in row n = 2*A003440(n) for n>0, where A003440 = number of binary vectors with restricted repetitions.
Riordan array (1-x+x^2, x(1-x)). - Philippe Deléham, Nov 04 2009
FORMULA
G.f.: (1-x+x^2)/(1-x*y*(1-x)).
T(n, k) = T(n-1, k-1) - T(n-2, k-1) for k>0 with T(0, 0)=1, T(1, 0)=-1, T(2, 0)=1, T(n, 0)=0 (n>2).
T(n, k) = (-1)^(n-k)*(C(k, n-k) + C(k+1, n-k-1)).
From Philippe Deléham, Nov 04 2009: (Start)
Sum_{k=0..n} T(n,k) = 0^n.
Sum_{k=0..n} abs(T(n, k)) = 2*Fibonacci(n+1) - [n=0].
Sum_{k=0..n} ( T(n,k) )^2 = 2*A003440(n) - [n=0]. (End)
EXAMPLE
Triangle begins as:
1;
-1, 1;
1, -2, 1;
0, 2, -3, 1;
0, -1, 4, -4, 1;
0, 0, -3, 7, -5, 1;
0, 0, 1, -7, 11, -6, 1;
0, 0, 0, 4, -14, 16, -7, 1;
0, 0, 0, -1, 11, -25, 22, -8, 1;
MATHEMATICA
Table[(-1)^(n-k)*(Binomial[k, n-k] + Binomial[k+1, n-k-1]), {n, 0, 12}, {k, 0, n}] //Flatten (* G. C. Greubel, Apr 30 2021 *)
PROG
(PARI) T(n, k)=local(X=x+x*O(x^n), Y=y+y*O(y^k)); polcoeff(polcoeff((1-X+X^2)/(1-X*Y*(1-X)), n, x), k, y)
(PARI) T(n, k)=if(n<k || k<0, 0, if(n==k, 1, if(n==1 && k==0, -1, if(n==2 && k==0, 1, T(n-1, k-1)-T(n-2, k-1)))))
(PARI) T(n, k)=(-1)^(n-k)*(binomial(k, n-k)+binomial(k+1, n-k-1))
(Sage)
def A104402(n, k): return (-1)^(n+k)*(binomial(k, n-k) + binomial(k+1, n-k-1))
flatten([[A104402(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 30 2021
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Paul D. Hanna, Mar 05 2005
STATUS
approved