login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A241377
Number of partitions of n such that the number of parts is a part and the number of distinct parts is a part.
5
0, 1, 0, 1, 0, 1, 2, 2, 3, 4, 5, 6, 8, 11, 12, 16, 20, 27, 31, 40, 49, 59, 72, 95, 110, 133, 164, 196, 237, 289, 351, 410, 502, 595, 704, 843, 1009, 1193, 1422, 1658, 1983, 2332, 2744, 3204, 3796, 4459, 5189, 6083, 7116, 8292, 9677, 11222, 13041, 15235
OFFSET
0,7
FORMULA
a(n) + A241378(n) + A241379(n) = A241381(n) for n >= 0.
EXAMPLE
a(9) counts these 4 partitions: 72, 531, 432, 4311.
MATHEMATICA
z = 70; f[n_] := f[n] = IntegerPartitions[n]; d[p_] := [p] = Length[DeleteDuplicates[p]];
Table[Count[f[n], p_ /; MemberQ[p, Length[p]] && MemberQ[p, d[p]]], {n, 0, z}] (* A241377 *)
Table[Count[f[n], p_ /; ! MemberQ[p, Length[p]] && MemberQ[p, d[p]]], {n, 0, z}] (* A241378 *)
Table[Count[f[n], p_ /; MemberQ[p, Length[p]] && ! MemberQ[p, d[p]]], {n, 0, z}] (* A241379 *)
Table[Count[f[n], p_ /; ! MemberQ[p, Length[p]] && ! MemberQ[p, d[p]]], {n, 0, z}] (* A241380 *)
Table[Count[f[n], p_ /; MemberQ[p, Length[p]] || MemberQ[p, d[p]]], {n, 0, z}] (* A241381 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 21 2014
STATUS
approved