The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A241380 Number of partitions of n such that neither the number of parts nor the number of distinct parts is a part. 5
 1, 0, 1, 1, 2, 2, 6, 6, 11, 13, 20, 26, 36, 48, 62, 84, 110, 142, 185, 235, 303, 384, 486, 612, 779, 949, 1205, 1481, 1846, 2248, 2812, 3390, 4181, 5070, 6195, 7450, 9102, 10896, 13199, 15785, 18994, 22660, 27177, 32262, 38482, 45722, 54224, 64125, 75934 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 LINKS FORMULA a(n) + A241381(n) = A000041(n) for n >= 0. EXAMPLE a(6) counts these 6 partitions:  6, 51, 411, 33, 3111, 222. MATHEMATICA z = 30; f[n_] := f[n] = IntegerPartitions[n]; d[p_] := [p] = Length[DeleteDuplicates[p]]; Table[Count[f[n], p_ /; MemberQ[p, Length[p]] && MemberQ[p, d[p]]], {n, 0, z}]  (* A241377 *) Table[Count[f[n], p_ /; ! MemberQ[p, Length[p]] && MemberQ[p, d[p]]], {n, 0, z}]  (* A241378 *) Table[Count[f[n], p_ /; MemberQ[p, Length[p]] && ! MemberQ[p, d[p]]], {n, 0, z}]  (* A241379 *) Table[Count[f[n], p_ /; ! MemberQ[p, Length[p]] && ! MemberQ[p, d[p]]], {n, 0, z}]  (* A241380 *) Table[Count[f[n], p_ /; MemberQ[p, Length[p]] || MemberQ[p, d[p]]], {n, 0, z}] (* A241381 *) CROSSREFS Cf. A241377, A241378, A241379, A241381, A000041. Sequence in context: A032139 A032043 A200561 * A028476 A179478 A051548 Adjacent sequences:  A241377 A241378 A241379 * A241381 A241382 A241383 KEYWORD nonn,easy AUTHOR Clark Kimberling, Apr 21 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 6 21:24 EDT 2020. Contains 333286 sequences. (Running on oeis4.)