login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A261202
Expansion of phi(-x) * phi(-x^9) / f(-x^6)^2 in powers of x where phi(), f() are Ramanujan theta functions.
2
1, -2, 0, 0, 2, 0, 2, -4, 0, -4, 8, 0, 5, -14, 0, -8, 20, 0, 14, -28, 0, -20, 44, 0, 28, -66, 0, -40, 90, 0, 56, -124, 0, -80, 176, 0, 109, -244, 0, -144, 326, 0, 198, -432, 0, -268, 580, 0, 349, -772, 0, -456, 1004, 0, 600, -1300, 0, -780, 1692, 0, 1001
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(1/2) * eta(q)^2 * eta(q^9)^2 / (eta(q^2) * eta(q^6)^2 * eta(q^18)) in powers of q.
Euler transform of period 18 sequence [ -2, -1, -2, -1, -2, 1, -2, -1, -4, -1, -2, 1, -2, -1, -2, -1, -2, 0, ...].
a(3*n + 2) = 0.
EXAMPLE
G.f. = 1 - 2*x + 2*x^4 + 2*x^6 - 4*x^7 - 4*x^9 + 8*x^10 + 5*x^12 + ...
G.f. = 1/q - 2*q + 2*q^7 + 2*q^11 - 4*q^13 - 4*q^17 + 8*q^19 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, x] EllipticTheta[ 4, 0, x^9] / QPochhammer[ x^6]^2, {x, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^9 + A)^2 / (eta(x^2 + A) * eta(x^6 + A)^2 * eta(x^18 + A)), n))};
CROSSREFS
Sequence in context: A046113 A262938 A143068 * A334596 A291900 A263146
KEYWORD
sign
AUTHOR
Michael Somos, Aug 11 2015
STATUS
approved