The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A261205 Numbers k such that floor(k^(1/m)) divides k for all integers m >= 1. 4
 1, 2, 3, 4, 6, 8, 12, 16, 20, 24, 30, 36, 42, 48, 64, 72, 80, 120, 210, 240, 288, 324, 420, 528, 552, 576, 600, 624, 900, 1260, 1764, 1848, 1980, 3024, 6480, 8100, 8280, 11880, 14160, 14280, 14400, 14520, 14640, 28560, 43680, 44520, 46872, 50400, 175560, 331200, 346920, 491400, 809100, 3418800, 4772040, 38937600, 203918400, 2000862360 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Is this a finite sequence? There are no other terms below 10^23. - Giovanni Resta, Aug 13 2015 LINKS EXAMPLE From Michel Marcus, Aug 13 2015: (Start) For k=1 to 9, we have the following floored roots:   k=1: 1, 1, ...   k=2: 2, 1, 1, ...   k=3: 3, 1, 1, ...   k=4: 4, 2, 1, 1, ...   k=5: 5, 2, 1, 1, ...   k=6: 6, 2, 1, 1, ...   k=7: 7, 2, 1, 1, ...   k=8: 8, 2, 2, 1, 1, ...   k=9: 9, 3, 2, 1, 1, ... where one can see that 5, 7 and 9 are not terms. (End) MATHEMATICA fQ[n_] := Block[{d, k = 2, lst = {}}, While[d = Floor[n^(1/k)]; d > 1, AppendTo[lst, d]; k++]; Union[ IntegerQ@# & /@ (n/Union[lst])] == {True}]; k = 4; lst = {1, 2, 3}; While[k < 10^6, If[fQ@ k, AppendTo[lst, k]; Print@ k]; k++]; lst (* Robert G. Wilson v, Aug 15 2015 *) PROG (PARI) is(n) = my(k, t); k=2; while( (t=sqrtnint(n, k)) > 1, if(n%t, return(0)); k++); 1 n=1; while(n<10^5, if(is(n), print1(n, ", ")); n++) /* Able to generate terms < 10^5 */ \\ Derek Orr, Aug 12 2015 CROSSREFS Cf. A261206, A261341, A261342. Subsequence of A006446. Sequence in context: A217689 A018718 A079647 * A036451 A297216 A241743 Adjacent sequences:  A261202 A261203 A261204 * A261206 A261207 A261208 KEYWORD nonn,nice AUTHOR Yan A. Denenberg and Max Alekseyev, Aug 11 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 8 17:01 EST 2021. Contains 349596 sequences. (Running on oeis4.)