

A046113


Coefficients in expansion of theta_3(q) * theta_3(q^6) in powers of q.


5



1, 2, 0, 0, 2, 0, 2, 4, 0, 2, 4, 0, 0, 0, 0, 4, 2, 0, 0, 0, 0, 0, 4, 0, 2, 6, 0, 0, 4, 0, 0, 4, 0, 4, 0, 0, 2, 0, 0, 0, 4, 0, 4, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 2, 8, 0, 0, 4, 0, 4, 0, 0, 4, 2, 0, 0, 0, 0, 0, 8, 0, 0, 4, 0, 0, 0, 0, 0, 4, 0, 2, 0, 0, 0, 0, 0, 4, 4, 0, 4, 0, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

Number of representations of n as a sum of six times a square and a square.  Ralf Stephan, May 14 2007


REFERENCES

J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", SpringerVerlag, p 102 eq 9.


LINKS



FORMULA

G.f.: Sum_{ i, j = inf .. inf } q^(i^2 + 6*j^2).


EXAMPLE

G.f. = 1 + 2*x + 2*x^4 + 2*x^6 + 4*x^7 + 2*x^9 + 4*x^10 + 4*x^15 + 2*x^16 + ...


MATHEMATICA

a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^6], {q, 0, n}]; (* Michael Somos, Apr 19 2015 *)


PROG

(PARI) {a(n) = my(G); if( n<0, 0, G = [ 1, 0; 0, 6]; polcoeff( 1 + 2 * x * Ser( qfrep( G, n)), n))}; /* Michael Somos, Mar 01 2011 */


CROSSREFS



KEYWORD

nonn


AUTHOR



STATUS

approved



