The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A086967 Number of distinct zeros of x^5-x-1 mod prime(n). 3
 0, 0, 0, 0, 0, 0, 2, 1, 1, 1, 1, 0, 2, 2, 2, 2, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 2, 0, 2, 1, 1, 0, 0, 0, 2, 1, 3, 0, 1, 2, 2, 2, 3, 0, 0, 0, 1, 3, 2, 0, 1, 1, 1, 0, 1, 1, 0, 0, 2, 0, 2, 3, 2, 1, 2, 1, 0, 2, 2, 0, 1, 0, 2, 0, 0, 1, 0, 0, 2, 0, 1, 0, 1, 1, 1, 0, 2, 0, 2, 3, 1, 3, 1, 3, 0, 0, 1, 0, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,7 COMMENTS For the prime modulus 19, the polynomial can be factored as (x+6)^2 (x^3+7x^2+13x+10), showing that x=13 is a zero of multiplicity 2. For the prime modulus 151, the polynomial can be factored as (x+9) (x+39)^2 (x^2+64x+61), showing that x=112 is a zero of multiplicity 2. The discriminant of the polynomial is 2869=19*151. - T. D. Noe, Aug 12 2004 LINKS Table of n, a(n) for n=1..100. J.-P. Serre, On a theorem of Jordan, Bull. Amer. Math. Soc., 40 (No. 4, 2003), 429-440, see p. 435. MATHEMATICA Table[p=Prime[n]; cnt=0; Do[If[Mod[x^5-x-1, p]==0, cnt++ ], {x, 0, p-1}]; cnt, {n, 100}] (from T. D. Noe) CROSSREFS Cf. A086937, A086965, A086966. Sequence in context: A282778 A342788 A059883 * A098490 A247138 A212627 Adjacent sequences: A086964 A086965 A086966 * A086968 A086969 A086970 KEYWORD nonn AUTHOR N. J. A. Sloane, Sep 24 2003 EXTENSIONS More terms from T. D. Noe, Sep 24 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 17 13:58 EDT 2024. Contains 371764 sequences. (Running on oeis4.)