The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A086965 Number of distinct zeros of x^3-x-1 mod prime(n). 5
 0, 0, 1, 1, 1, 0, 1, 1, 2, 0, 0, 1, 0, 1, 0, 1, 3, 1, 1, 0, 0, 1, 1, 1, 1, 3, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 3, 3, 0, 1, 1, 0, 0, 1, 3, 3, 1, 1, 0, 0, 1, 1, 0, 1, 0, 3, 0, 1, 1, 1, 3, 0, 1, 3, 0, 1, 3, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 3, 1, 0, 3, 1, 1, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,9 COMMENTS For the prime modulus 23, the polynomial can be factored as (x+13)^2 (x+20), showing that x=10 is a zero of multiplicity 2. The discriminant of the polynomial is -23. - T. D. Noe, Aug 12 2004 LINKS G. C. Greubel, Table of n, a(n) for n = 1..1000 J.-P. Serre, On a theorem of Jordan, Bull. Amer. Math. Soc., 40 (No. 4, 2003), 429-440, see pp. 433-434. FORMULA If p = prime(n), a(n) = A030199(p) + 1. MATHEMATICA Table[p=Prime[n]; cnt=0; Do[If[Mod[x^3-x-1, p]==0, cnt++ ], {x, 0, p-1}]; cnt, {n, 100}] (* T. D. Noe, Aug 12 2004 *) CROSSREFS Cf. A086937, A086966, A086967. Sequence in context: A345375 A101669 A243067 * A256572 A025463 A327686 Adjacent sequences:  A086962 A086963 A086964 * A086966 A086967 A086968 KEYWORD nonn AUTHOR N. J. A. Sloane, Sep 24 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 26 02:27 EDT 2021. Contains 347664 sequences. (Running on oeis4.)