login
A243067
Integers from 0 to A000120(n)-1 followed by integers from 0 to A000120(n+1)-1 and so on, starting with n=1.
3
0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 2, 0, 0, 1, 0, 1, 0, 1, 2, 0, 1, 0, 1, 2, 0, 1, 2, 0, 1, 2, 3, 0, 0, 1, 0, 1, 0, 1, 2, 0, 1, 0, 1, 2, 0, 1, 2, 0, 1, 2, 3, 0, 1, 0, 1, 2, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 4, 0, 0, 1, 0, 1, 0, 1, 2, 0, 1, 0, 1, 2, 0, 1, 2, 0, 1, 2, 3, 0, 1, 0, 1, 2, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 0, 1, 2, 3, 0
OFFSET
1,12
FORMULA
a(n) = n - (1 + A000788(A100922(n-1)-1)).
EXAMPLE
For n=1, also 1 in binary notation, so the count of its 1-bits is 1 (A000120(1)=1), we list numbers from 0 to 0, thus just 0.
For n=2, 10 in binary, thus A000120(2)=1, we list numbers from 0 to 0, thus just 0.
For n=3, 11 in binary, thus A000120(3)=2, we list numbers from 0 to 1, and so we have the first four terms of the sequence: 0; 0; 0, 1;
PROG
(Scheme) (define (A243067 n) (- n (+ 1 (A000788 (- (A100922 (- n 1)) 1)))))
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 19 2014
STATUS
approved