login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A243068
Fixed points of A242420.
5
1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 21, 23, 24, 25, 27, 29, 30, 31, 32, 36, 37, 41, 43, 47, 48, 49, 53, 54, 59, 61, 63, 64, 65, 67, 70, 71, 72, 73, 79, 81, 83, 89, 96, 97, 101, 103, 107, 108, 109, 113, 121, 125, 127, 128, 131, 133, 137, 139, 144
OFFSET
1,2
COMMENTS
A number n is present if its prime factorization n = p_a * p_b * p_c * ... * p_i * p_j * p_k^e_k, where a <= b <= c <= ... <= i <= j < k are the indices of prime factors, not necessarily all distinct, except that j < k, and the greatest prime divisor p_k [with k = A061395(n)] may occur multiple times, satisfies the condition that the first differences of those prime indices (a-0, b-a, c-b, ..., j-i, k-j) form a palindrome.
LINKS
EXAMPLE
4 = p_1^2 is present, as the first differences (deltas) of the prime indices (excluding the extra copies of the largest prime factor 2), form a palindrome: (1-0) = (1).
18 = 2*3*3 = p_1 * p_2 * p_2 is present, as the deltas of the indices of its nondistinct prime factors, (excluding the extra copies of the largest prime factor 3) form a palindrome: (1-0, 2-1) = (1,1).
60 = 2*2*3*5 = p_1 * p_1 * p_2 * p_3 is NOT present, as the deltas of prime indices (1-0, 1-1, 2-1, 3-2) = (1,0,1,1) do NOT form a palindrome.
Also, any of the cases mentioned in the Example section of A243058 as being present there, are also present in this sequence.
PROG
(Scheme, with Antti Karttunen's IntSeq-library)
(define A243068 (FIXED-POINTS 1 1 A242420))
CROSSREFS
Fixed points of A242420.
Differs from A242413 for the first time at n=36, where a(36)=61, while A242413(36)=60.
A000040 and A243058 are subsequences.
Sequence in context: A068998 A072303 A242413 * A342339 A081061 A317589
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 01 2014
STATUS
approved