login
A068998
Numbers m such that the concatenation of the prime factors of m (in increasing order and ignoring multiplicity) is prime.
2
2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 21, 22, 23, 24, 25, 27, 29, 31, 32, 33, 36, 37, 39, 41, 43, 44, 46, 47, 48, 49, 51, 53, 54, 58, 59, 61, 63, 64, 66, 67, 70, 71, 72, 73, 79, 81, 82, 83, 88, 89, 92, 93, 96, 97, 99, 101, 103, 107, 108, 109, 111
OFFSET
1,1
LINKS
EXAMPLE
The prime factors of 51 are 3 and 17 and their concatenation 317 is prime, so 51 belongs to the sequence.
MAPLE
q:= n-> isprime(parse(cat(sort(map(i-> i[1], ifactors(n)[2]))[]))):
select(q, [$2..222])[]; # Alois P. Heinz, Mar 27 2024
MATHEMATICA
Reap[Do[If[PrimeQ[#], Sow[n]] &[FromDigits[Join @@ Map[IntegerDigits, FactorInteger[n][[All, 1]] ] ] ], {n, 120}]][[-1, 1]] (* Michael De Vlieger, Mar 27 2024 *)
PROG
(Python)
def a(n):
b, s = bin(n)[2:], str(n)
return int("".join(d for i, d in enumerate(s) if b[i]=="1"))
print([a(n) for n in range(1, 81)]) # Michael S. Branicky, Mar 27 2024
CROSSREFS
KEYWORD
base,easy,nonn
AUTHOR
Joseph L. Pe, Mar 16 2002
EXTENSIONS
Missing 4 inserted and more terms from Sean A. Irvine, Mar 27 2024
STATUS
approved