login
A243065
Permutation of natural numbers, the odd bisection of A241909 halved; equally, a composition of A064216 and A241909: a(n) = A241909(A064216(n)).
18
1, 2, 4, 8, 3, 16, 32, 9, 64, 128, 27, 256, 6, 5, 512, 1024, 81, 18, 2048, 243, 4096, 8192, 25, 16384, 12, 729, 32768, 54, 2187, 65536, 131072, 125, 162, 262144, 6561, 524288, 1048576, 15, 36, 2097152, 7, 4194304, 486, 19683, 8388608, 108, 59049, 1458, 16777216, 625, 33554432, 67108864, 75
OFFSET
1,2
COMMENTS
Are there any other fixed points than 1, 2, 18 and 72?
FORMULA
a(1) = 1, and for n>=2, a(n) = A241909(2n-1)/2. Equally, a(n) = ceiling(A241909(2n-1)/2) for all n.
As a composition of related permutations:
a(n) = A241909(A064216(n)).
a(n) = A241909(A243061(A241909(n))).
For all n, a(A006254(n)) = 2^n.
PROG
(Scheme) (define (A243065 n) (A241909 (A064216 n)))
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 01 2014
STATUS
approved