The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A353709 a(0)=0, a(1)=1; thereafter a(n) = smallest nonnegative integer not among the earlier terms of the sequence such that a(n) and a(n-2) have no common 1-bits in their binary representations and also a(n) and a(n-1) have no common 1-bits in their binary representations. 21
 0, 1, 2, 4, 8, 3, 16, 12, 32, 17, 6, 40, 64, 5, 10, 48, 65, 14, 128, 33, 18, 68, 9, 34, 20, 72, 35, 132, 24, 66, 36, 25, 130, 96, 13, 144, 98, 256, 21, 42, 192, 257, 22, 104, 129, 258, 28, 97, 384, 26, 37, 320, 136, 7, 80, 160, 11, 84, 288, 131, 76, 272, 161, 70, 264, 49, 134, 328, 512, 19, 44, 448, 513, 30, 224, 768, 15, 112, 640, 259, 52, 200, 514, 53 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS A set-theory analog of A084937. Conjecture: This is a permutation of the nonnegative numbers. LINKS Michael De Vlieger, Table of n, a(n) for n = 0..16384 Walter Trump, Table of n, a(n) for n = 0..10^6 Walter Trump, Log-log plot of first 2^24 terms MAPLE read(transforms) : # ANDnos def'd here A353709 := proc(n) option remember; local c, i, known ; if n <= 2 then n; else for c from 1 do known := false ; for i from 1 to n-1 do if procname(i) = c then known := true; break ; end if; end do: if not known and ANDnos(c, procname(n-2)) = 0 and ANDnos(c, procname(n-1)) = 0 then return c; end if; end do: end if; end proc: # Following R. J. Mathar's program for A109812. [seq(A353709(n), n=0..256)] ; # second Maple program: b:= proc() false end: t:= 2: a:= proc(n) option remember; global t; local k; if n<2 then n       else for k from t while b(k) or Bits[And](k, a(n-2))>0       or Bits[And](k, a(n-1))>0 do od; b(k):=true;       while b(t) do t:=t+1 od; k fi     end: seq(a(n), n=0..100);  # Alois P. Heinz, May 06 2022 MATHEMATICA nn = 83; c[_] = -1; a[0] = c[0] = 0; a[1] = c[1] = 1; u = 2; Do[k = u; While[Nand[c[k] == -1, BitAnd[a[n - 1], k] == 0, BitAnd[a[n - 2], k] == 0], k++]; Set[{a[n], c[k]}, {k, n}]; If[k == u, While[c[u] > -1, u++]], {n, 2, nn}], n]; Array[a, nn+1, 0] (* Michael De Vlieger, May 06 2022 *) PROG (Python) from itertools import count, islice def A353709_gen(): # generator of terms     s, a, b, c, ab = {0, 1}, 0, 1, 2, 1     yield from (0, 1)     while True:         for n in count(c):             if not (n & ab or n in s):                 yield n                 a, b = b, n                 ab = a|b                 s.add(n)                 while c in s:                     c += 1                 break A353709_list = list(islice(A353709_gen(), 20)) # Chai Wah Wu, May 07 2022 CROSSREFS Cf. A084937 (number theory analog), A109812, A121216, A353405 (powers of 2), A353708, A353710, A353715 and A353716 (a(n)+a(n+1)), A353717 (inverse), A353718, A353719 (primes), A353720 and A353721 (Records). For the numbers that are the slowest to appear see A353723 and A353722. Sequence in context: A242365 A119436 A277695 * A317503 A243505 A243065 Adjacent sequences:  A353706 A353707 A353708 * A353710 A353711 A353712 KEYWORD nonn,base AUTHOR N. J. A. Sloane, May 06 2022 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 16 20:22 EDT 2022. Contains 356169 sequences. (Running on oeis4.)