login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The partition function G(n,5).
9

%I #39 Oct 01 2017 01:32:01

%S 1,1,2,5,15,52,202,869,4075,20645,112124,648649,3976633,25719630,

%T 174839120,1245131903,9263053753,71806323461,578719497070,

%U 4839515883625,41916097982471,375401824277096,3471395994487422,33099042344383885,325005134436155395

%N The partition function G(n,5).

%C Set partitions into sets of size at most 5. The e.g.f. for partitions into sets of size at most s is exp( sum(j=1..s, x^j/j!) ). [_Joerg Arndt_, Dec 07 2012]

%H Seiichi Manyama, <a href="/A110038/b110038.txt">Table of n, a(n) for n = 0..591</a> (terms 0..200 from Alois P. Heinz)

%H Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, <a href="http://arxiv.org/abs/1701.08394">Analysis of the Gift Exchange Problem</a>, arXiv:1701.08394 [math.CO], 2017.

%H David Applegate and N. J. A. Sloane, <a href="http://arxiv.org/abs/0907.0513">The Gift Exchange Problem</a>, arXiv:0907.0513 [math.CO], 2009.

%H P. J. Cameron, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL3/groups.html">Sequences realized by oligomorphic permutation groups</a>, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.

%H Vladimir Kruchinin, <a href="http://arxiv.org/abs/1009.2565">Composition of ordinary generating functions</a>, arXiv:1009.2565 [math.CO], 2010.

%H F. L. Miksa, L. Moser and M. Wyman, <a href="http://dx.doi.org/10.4153/CMB-1958-010-2">Restricted partitions of finite sets</a>, Canad. Math. Bull., 1 (1958), 87-96.

%F E.g.f.: exp( x + x^2/2 + x^3/6 + x^4/24 + x^5/120 ).

%F a(n) = n! * sum(k=1..n, 1/k! * sum(r=0..k, C(k,r) * sum(m=0..r, 2^(m-r) * C(r,m) * sum(j=0..m, C(m,j) * C(j,n-m-k-j-r) * 6^(j-m) * 24^(n-r-m-k-2*j) * 120^(m+k+j+r-n))))). - _Vladimir Kruchinin_, Jan 25 2011

%F a(n) = G(n,5) with G(0,i) = 1, G(n,i) = 0 for n>0 and i<1, otherwise G(n,i) = Sum_{j=0..floor(n/i)} G(n-i*j,i-1) * n!/(i!^j*(n-i*j)!*j!). - _Alois P. Heinz_, Apr 20 2012

%p G:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,

%p add(G(n-i*j, i-1) *n!/i!^j/(n-i*j)!/j!, j=0..n/i)))

%p end:

%p a:= n-> G(n, 5):

%p seq(a(n), n=0..30); # _Alois P. Heinz_, Apr 20 2012

%p # second Maple program:

%p a:= proc(n) option remember; `if`(n<5, [1, 1, 2, 5, 15][n+1],

%p a(n-1)+(n-1)*(a(n-2)+(n-2)/2*(a(n-3)+(n-3)/3*(a(n-4)

%p +(n-4)/4*a(n-5)))))

%p end:

%p seq(a(n), n=0..30); # _Alois P. Heinz_, Sep 15 2013

%t G[n_, i_] := G[n, i] = If[n == 0, 1, If[i<1, 0, Sum[G[n-i*j, i-1] *n!/i!^j/(n-i*j)!/j!, {j, 0, n/i}]]]; a[n_] := G[n, 5]; Table[a[n], {n, 0, 30}] (* _Jean-François Alcover_, Mar 17 2014, after _Alois P. Heinz_ *)

%Y The sequences G(n,1), G(n,2), G(n,3), G(n,4), G(n,5), G(n,6) are given by A000012, A000085, A001680, A001681, A110038, A148092 respectively.

%Y Column k=5 of A229223.

%Y Cf. A276925.

%K nonn

%O 0,3

%A _N. J. A. Sloane_, May 13 2009