login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A252702
Number of strings of length n over a 9-letter alphabet that do not begin with a palindrome.
9
0, 9, 72, 576, 5112, 45432, 408312, 3669696, 33022152, 297153936, 2674339992, 24068651616, 216617456232, 1949553436392, 17545977257832, 157913762298336, 1421223827662872, 12791014151811912, 115119127069153272, 1036072140948039456, 9324649265858015112
OFFSET
0,2
COMMENTS
9 divides a(n) for all n.
lim n -> infinity a(n)/9^n ~ 0.766976957370438 is the probability that a random, infinite string over a 9-letter alphabet does not begin with a palindrome.
This sequence gives the number of walks on K_9 with loops that do not begin with a palindromic sequence.
FORMULA
a(n) = 9^n - A249642(n) for n > 0.
EXAMPLE
For n = 3, the first 10 of the a(3) = 576 solutions are (in lexicographic order) 011, 012, 013, 014, 015, 016, 017, 018, 021, 022.
PROG
(Ruby) seq = [1, 0]; (2..N).each { |i| seq << 9 * seq[i-1] + 9**((i+1)/2) - seq[(i+1)/2] }; seq = seq.each_with_index.collect { |a, i| 9**i - a }
CROSSREFS
A249642 gives the number of strings of length n over a 9-letter alphabet that DO begin with a palindrome.
Analogous sequences for k-letter alphabets: A252696 (k=3), A252697 (k=4), A252698 (k=5), A252699 (k=6), A252700 (k=7), A252701 (k=8), A252703 (k=10).
Sequence in context: A170642 A170690 A003951 * A033135 A127053 A001809
KEYWORD
easy,nonn,walk
AUTHOR
Peter Kagey, Dec 20 2014
STATUS
approved