

A116957


LynchBell numbers n such that 5 is a digit of n.


0



5, 15, 135, 175, 315, 735, 1395, 1935, 3195, 3915, 9135, 9315
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

A LynchBell number is a positive integer n with distinct nonzero digits such that each of its digits divides the number: n mod d = 0 if d is a digit of n.


LINKS

Table of n, a(n) for n=1..12.


EXAMPLE

a(3)=135 since 135 is the third LynchBell number that contains a 5.


MATHEMATICA

lbn5Q[n_]:=Module[{idn=IntegerDigits[n]}, MemberQ[idn, 5]&&FreeQ[idn, 0]&&Max[DigitCount[n]]==1&&AllTrue[n/idn, IntegerQ]]; Select[Range[ 10000], lbn5Q] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Aug 19 2019 *)


CROSSREFS

Cf. A115569, A034838, A034709, A063527.
Sequence in context: A244298 A050542 A091096 * A124209 A207970 A207971
Adjacent sequences: A116954 A116955 A116956 * A116958 A116959 A116960


KEYWORD

fini,full,base,nonn


AUTHOR

Walter Kehowski, Apr 03 2006


STATUS

approved



