login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A124209
Numbers n such that 1 + n + n^3 + n^5 + n^7 + n^9 + n^11 + ... + n^61 + n^63 is prime.
5
5, 15, 140, 359, 615, 876, 941, 1109, 1230, 1292, 1302, 1325, 1752, 1799, 2064, 2535, 2645, 2690, 2942, 3042, 3138, 3200, 3449, 3473, 3527, 3560, 3713, 4070, 4488, 4658, 4767, 5055, 5169, 5195, 5472, 5592, 5604, 5841, 5856, 5939, 6201, 6669, 6677, 6731, 6857
OFFSET
1,1
LINKS
Chai Wah Wu, Table of n, a(n) for n = 1..1237 (n = 1..230 from Vincenzo Librandi)
MAPLE
a:= proc(n) option remember; local k;
for k from 1+`if`(n=1, 1, a(n-1)) while
not isprime(1+(k^65-k)/(k^2-1)) do od; k
end:
seq(a(n), n=1..30); # Alois P. Heinz, Jun 26 2014
MATHEMATICA
Do[If[PrimeQ[1 + n + n^3 + n^5 + n^7 + n^9 + n^11 + n^13 + n^15 + n^17 + n^19 + n^21 + n^23 + n^25 + n^27 + n^29 + n^31 + n^33 + n^35 + n^37 + n^39 + n^41 + n^43 + n^45 + n^47 + n^49 + n^51 + n^53 + n^55 + n^57 + n^59 + n^61 + n^63], Print[n]], {n, 1, 2400}]
Select[Range[7000], PrimeQ[Total[#^Range[1, 63, 2]] + 1] &] (* Vincenzo Librandi, Jun 28 2014 *)
PROG
(PARI) for(n=1, 10^4, if(ispseudoprime(sum(i=0, 31, n^(2*i+1))+1), print1(n, ", "))) \\ Derek Orr, Jun 24 2014
(Magma) [n: n in [0..5000] | IsPrime(s) where s is 1+&+[n^i: i in [1..63 by 2]]]; // Vincenzo Librandi, Jun 28 2014
CROSSREFS
Cf. A049407, similar sequences listed in A244376.
Sequence in context: A050542 A091096 A116957 * A207970 A207971 A245648
KEYWORD
nonn,easy
AUTHOR
Artur Jasinski, Dec 13 2006
EXTENSIONS
a(28) and beyond from Derek Orr, Jun 24 2014
STATUS
approved