login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A124207
Numbers n such that 1 + n + n^3 + n^5 + n^7 + n^9 + n^11 + ... + n^53 + n^55 is prime.
2
1, 186, 256, 325, 763, 853, 916, 1239, 1297, 1398, 1500, 1669, 1878, 1992, 2373, 2503, 2536, 2578, 2626, 2740, 2823, 2836, 2841, 2926, 2958, 3193, 3255, 3381, 3447, 3738, 3843, 3903, 4095, 4156, 4246, 4321, 4407, 4530, 4540, 4572, 4855, 5190, 5322, 5361, 5530
OFFSET
1,2
LINKS
MAPLE
a:= proc(n) option remember; local k;
for k from 1+ a(n-1) while
not isprime(1+(k^57-k)/(k^2-1)) do od; k
end: a(1):=1:
seq(a(n), n=1..30); # Alois P. Heinz, Jun 26 2014
MATHEMATICA
Do[If[PrimeQ[1 + n + n^3 + n^5 + n^7 + n^9 + n^11 + n^13 + n^15 + n^17 + n^19 + n^21 + n^23 + n^25 + n^27 + n^29 + n^31 + n^33 + n^35 + n^37 + n^39 + n^41 + n^43 + n^45 + n^47 + n^49 + n^51 + n^53 + n^55], Print[n]], {n, 1, 2400}]
Select[Range[6000], PrimeQ[Total[#^Range[1, 55, 2]] + 1] &] (* Vincenzo Librandi, Jun 28 2014 *)
PROG
(PARI) for(n=1, 10^4, if(ispseudoprime(sum(i=0, 27, n^(2*i+1))+1), print1(n, ", "))) \\ Derek Orr, Jun 24 2014
(Magma) [n: n in [0..6000] | IsPrime(s) where s is 1+&+[n^i: i in [1..55 by 2]]]; // Vincenzo Librandi, Jun 28 2014
CROSSREFS
Cf. A049407, similar sequences listed in A244376.
Sequence in context: A015273 A214605 A186398 * A189941 A362811 A363681
KEYWORD
nonn,easy
AUTHOR
Artur Jasinski, Dec 13 2006
EXTENSIONS
a(42) and beyond from Derek Orr, Jun 24 2014
STATUS
approved