login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A124205
Numbers n such that 1 + n + n^3 + n^5 + n^7 + n^9 + n^11 + ... + n^45 + n^47 is prime.
5
12, 18, 39, 75, 82, 92, 133, 152, 273, 428, 568, 617, 749, 922, 949, 975, 1020, 1033, 1058, 1088, 1113, 1207, 1253, 1329, 1372, 1389, 1762, 1784, 1882, 1943, 1950, 1962, 1969, 2372, 2445, 2508, 2594, 2768, 2973, 2977, 3237, 3327, 3338, 3459, 3545, 3550, 3554
OFFSET
1,1
LINKS
MAPLE
a:= proc(n) option remember; local k;
for k from 1+`if`(n=1, 1, a(n-1)) while
not isprime(1+(k^49-k)/(k^2-1)) do od; k
end:
seq(a(n), n=1..40); # Alois P. Heinz, Jun 26 2014
MATHEMATICA
Do[If[PrimeQ[1 + n + n^3 + n^5 + n^7 + n^9 + n^11 + n^13 + n^15 + n^17 + n^19 + n^21 + n^23 + n^25 + n^27 + n^29 + n^31 + n^33 + n^35 + n^37 + n^39 + n^41 + n^43 + n^45 + n^47], Print[n]], {n, 1, 2400}] (* Artur Jasinski *)
Select[Range[2500], PrimeQ[Total[#^Range[1, 47, 2]] + 1] &] (* Harvey P. Dale, Jan 13 2011 *)
PROG
(PARI) for(n=1, 10^4, if(ispseudoprime(sum(i=0, 23, n^(2*i+1))+1), print1(n, ", "))) \\ Derek Orr, Jun 24 2014
(Magma) [n: n in [0..4000] | IsPrime(s) where s is 1+&+[n^i: i in [1..47 by 2]]]; // Vincenzo Librandi, Jun 27 2014, after Derek Orr
CROSSREFS
Cf. A049407.
Sequence in context: A230354 A349180 A197464 * A338259 A133403 A152615
KEYWORD
nonn
AUTHOR
Artur Jasinski, Dec 13 2006
EXTENSIONS
a(35) and beyond from Derek Orr, Jun 24 2014
STATUS
approved