login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A244299 Number of standard Young tableaux with n cells such that the lengths of the first and the last row differ by 5. 2

%I

%S 6,21,188,791,4696,21614,109745,513421,2557358,11885545,58291639,

%T 275421640,1342532532,6411950652,31310737486,151220406569,

%U 742729520457,3625802212441,17956348335989,88575381634494,442565032597013,2207206278880826,11138577085071310

%N Number of standard Young tableaux with n cells such that the lengths of the first and the last row differ by 5.

%C Also the number of ballot sequences of length n such that the multiplicities of the largest and the smallest value differ by 5.

%H Alois P. Heinz, <a href="/A244299/b244299.txt">Table of n, a(n) for n = 7..100</a>

%p h:= proc(l) local n; n:=nops(l); add(i, i=l)!/mul(mul(1+l[i]-j+

%p add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n) end:

%p g:= proc(n, i, l) local j; `if`(n=0 or i<1, 0, `if`(l<>[] and

%p l[1]-i=5, `if`(irem(n, i, 'j')=0, h([l[], i$j]), 0),

%p add(g(n-i*j, i-1, [l[], i$j]), j=0..n/i)))

%p end:

%p a:= n-> g(n$2, []):

%p seq(a(n), n=7..35);

%t h[l_] := With[{n = Length[l]}, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i + 1, n}], {j, l[[i]]}], {i, n}]];

%t g[n_, i_, l_] := Module[{j}, If[n == 0 || i < 1, 0, If[l != {} && l[[1]] - i == 5, If[j = Quotient[n, i]; Mod[n, i] == 0, h[Join[l, Table[i, {j}]]], 0], Sum[g[n - i*j, i - 1, Join[l, Table[i, {j}]]], {j, 0, n/i}]]]];

%t a[n_] := g[n, n, {}];

%t Table[a[n], {n, 7, 35}] (* _Jean-Fran├žois Alcover_, Aug 28 2021, after Maple code *)

%Y Column k=5 of A238707.

%K nonn

%O 7,1

%A _Joerg Arndt_ and _Alois P. Heinz_, Jun 25 2014

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 9 21:08 EDT 2022. Contains 356026 sequences. (Running on oeis4.)