Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Aug 28 2021 03:24:31
%S 6,21,188,791,4696,21614,109745,513421,2557358,11885545,58291639,
%T 275421640,1342532532,6411950652,31310737486,151220406569,
%U 742729520457,3625802212441,17956348335989,88575381634494,442565032597013,2207206278880826,11138577085071310
%N Number of standard Young tableaux with n cells such that the lengths of the first and the last row differ by 5.
%C Also the number of ballot sequences of length n such that the multiplicities of the largest and the smallest value differ by 5.
%H Alois P. Heinz, <a href="/A244299/b244299.txt">Table of n, a(n) for n = 7..100</a>
%p h:= proc(l) local n; n:=nops(l); add(i, i=l)!/mul(mul(1+l[i]-j+
%p add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n) end:
%p g:= proc(n, i, l) local j; `if`(n=0 or i<1, 0, `if`(l<>[] and
%p l[1]-i=5, `if`(irem(n, i, 'j')=0, h([l[], i$j]), 0),
%p add(g(n-i*j, i-1, [l[], i$j]), j=0..n/i)))
%p end:
%p a:= n-> g(n$2, []):
%p seq(a(n), n=7..35);
%t h[l_] := With[{n = Length[l]}, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i + 1, n}], {j, l[[i]]}], {i, n}]];
%t g[n_, i_, l_] := Module[{j}, If[n == 0 || i < 1, 0, If[l != {} && l[[1]] - i == 5, If[j = Quotient[n, i]; Mod[n, i] == 0, h[Join[l, Table[i, {j}]]], 0], Sum[g[n - i*j, i - 1, Join[l, Table[i, {j}]]], {j, 0, n/i}]]]];
%t a[n_] := g[n, n, {}];
%t Table[a[n], {n, 7, 35}] (* _Jean-François Alcover_, Aug 28 2021, after Maple code *)
%Y Column k=5 of A238707.
%K nonn
%O 7,1
%A _Joerg Arndt_ and _Alois P. Heinz_, Jun 25 2014