login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143049
G.f. satisfies A(x) = 1 + x*A(-x)^6.
5
1, 1, -6, -21, 286, 1281, -20592, -100226, 1749462, 8899086, -162993402, -852079872, 16106878320, 85783258295, -1658113447608, -8950840125828, 175904428301062, 959332126312266, -19096256882857668, -104984591307499239, 2111233112316364434
OFFSET
0,3
LINKS
FORMULA
G.f. satisfies: A(x) = 1 + x*(1 - x*A(x)^6)^6.
G.f. satisfies: [A(x)^7 + A(-x)^7]/2 = [A(x)^6 + A(-x)^6]/2.
EXAMPLE
A(x) = 1 + x - 6*x^2 - 21*x^3 + 286*x^4 + 1281*x^5 - 20592*x^6 -++-...
A(x)^6 = 1 + 6*x - 21*x^2 - 286*x^3 + 1281*x^4 + 20592*x^5 - 100226*x^6 -...
A(x)^7 = 1 + 7*x - 21*x^2 - 364*x^3 + 1281*x^4 + 27027*x^5 - 100226*x^6 -...
Note that a bisection of A^7 equals a bisection of A^6.
PROG
(PARI) a(n)=local(A=x+x*O(x^n)); for(i=0, n, A=1+x*subst(A, x, -x)^6); polcoeff(A, n)
KEYWORD
sign
AUTHOR
Paul D. Hanna, Jul 19 2008
STATUS
approved