login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247629
Triangular array: T(n,k) = number of paths from (0,0) to (n,k), each segment given by a vector (1,1), (1,-1), or (2,0), not crossing the x-axis.
3
1, 0, 1, 1, 0, 1, 0, 3, 0, 1, 4, 0, 5, 0, 1, 0, 12, 0, 7, 0, 1, 16, 0, 24, 0, 9, 0, 1, 0, 52, 0, 40, 0, 11, 0, 1, 68, 0, 116, 0, 60, 0, 13, 0, 1, 0, 236, 0, 216, 0, 84, 0, 15, 0, 1, 304, 0, 568, 0, 360, 0, 112, 0, 17, 0, 1, 0, 1108, 0, 1144, 0, 556, 0, 144
OFFSET
0,8
LINKS
EXAMPLE
First 9 rows:
1
0 ... 1
1 ... 0 ... 1
0 ... 3 ... 0 ... 1
4 ... 0 ... 5 ... 0 ... 1
0 ... 12 .. 0 ... 7 ... 0 ...1
16 .. 0 ... 24 .. 0 ... 9 ... 0 ... 1
0 ... 52 .. 0 ... 40 .. 0 ... 11 .. 0 ... 1
68 .. 0 ... 116 . 0 ... 60 .. 0 ... 13 .. 0 ... 1
T(4,2) counts these 5 paths given as vector sums applied to (0,0):
(1,1) + (1,1) + (1,1) + (1,-1)
(1,1) + (1,1) + (2,0)
(1,1) + (1,1) + (1,-1) + (1,1)
(1,1) + (2,0) + (1,1)
(1,1) + (1,-1) + (1,1) + (1,-1)
MATHEMATICA
t[0, 0] = 1; t[1, 1] = 1; t[2, 0] = 1; t[2, 2] = 1; t[n_, k_] := t[n, k] = If[n >= 2 && k >= 1, t[n - 1, k - 1] + t[n - 1, k + 1] + t[n - 2, k], 0]; t[n_, 0] := t[n, 0] = If[n >= 2, t[n - 2, 0] + t[n - 1, 1], 0]; u = Table[t[n, k], {n, 0, 16}, {k, 0, n}]; TableForm[u] (* A247629 array *)
v = Flatten[u] (* A247629 sequence *)
Map[Total, u] (* A247630 *)
CROSSREFS
Cf. A247623, A247629, A026300, A006319 (1st column of this triangle).
Sequence in context: A327126 A273083 A307451 * A178116 A238709 A245120
KEYWORD
nonn,tabl,easy
AUTHOR
Clark Kimberling, Sep 21 2014
STATUS
approved