The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A063250 Number of binary right-rotations (iterations of A038572) to reach fixed point. 11
 0, 0, 1, 0, 2, 2, 1, 0, 3, 3, 3, 3, 2, 2, 1, 0, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 2, 2, 1, 0, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 2, 2, 1, 0, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS a(n) = 0 when n is a fixed point of form 2^k-1 left-rotation analog appears to be same as A048881. LINKS Table of n, a(n) for n=0..104. FORMULA If n+1 is a power of 2 then a(n)=0 otherwise a(n) = 1 + a(floor(n/2)). Conjectured g.f.: 1/(1-x) * Sum_{j>=0} x^(2^j) - (1-x^(2^j)) * Sum_{k>=1} x^((2^j)*(2^k-1)). - Mikhail Kurkov, Sep 29 2019 EXAMPLE a(11)=3 since under right-rotation 11 -> 13 -> 14 -> 7 and 7 is a fixed point. MATHEMATICA Table[Length[FixedPointList[FromDigits[RotateRight[IntegerDigits[ #, 2]], 2]&, n]]-2, {n, 0, 110}] (* Harvey P. Dale, Dec 23 2011 *) PROG (Python) def a(n): if n<2: return 0 b=bin(n)[2:] s=0 while "0" in b: N=int(b[-1] + b[:-1], 2) s+=1 b=bin(N)[2:] return s print([a(n) for n in range(105)]) # Indranil Ghosh, May 25 2017 CROSSREFS Cf. A038572, A048881. Sequence in context: A368282 A285099 A306754 * A348967 A285308 A276543 Adjacent sequences: A063247 A063248 A063249 * A063251 A063252 A063253 KEYWORD base,easy,nonn AUTHOR Marc LeBrun, Jul 11 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 23 21:46 EDT 2024. Contains 374575 sequences. (Running on oeis4.)