OFFSET
0,5
COMMENTS
a(n) = 0 when n is a fixed point of form 2^k-1 left-rotation analog appears to be same as A048881.
FORMULA
If n+1 is a power of 2 then a(n)=0 otherwise a(n) = 1 + a(floor(n/2)).
Conjectured g.f.: 1/(1-x) * Sum_{j>=0} x^(2^j) - (1-x^(2^j)) * Sum_{k>=1} x^((2^j)*(2^k-1)). - Mikhail Kurkov, Sep 29 2019
EXAMPLE
a(11)=3 since under right-rotation 11 -> 13 -> 14 -> 7 and 7 is a fixed point.
MATHEMATICA
Table[Length[FixedPointList[FromDigits[RotateRight[IntegerDigits[ #, 2]], 2]&, n]]-2, {n, 0, 110}] (* Harvey P. Dale, Dec 23 2011 *)
PROG
(Python)
def a(n):
if n<2: return 0
b=bin(n)[2:]
s=0
while "0" in b:
N=int(b[-1] + b[:-1], 2)
s+=1
b=bin(N)[2:]
return s
print([a(n) for n in range(105)]) # Indranil Ghosh, May 25 2017
CROSSREFS
KEYWORD
base,easy,nonn
AUTHOR
Marc LeBrun, Jul 11 2001
STATUS
approved