%I #40 Apr 26 2024 06:08:39
%S 0,0,1,0,2,2,1,0,3,3,3,3,2,2,1,0,4,4,4,4,4,4,4,4,3,3,3,3,2,2,1,0,5,5,
%T 5,5,5,5,5,5,5,5,5,5,5,5,5,5,4,4,4,4,4,4,4,4,3,3,3,3,2,2,1,0,6,6,6,6,
%U 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,5,5,5,5,5,5,5,5,5
%N Number of binary right-rotations (iterations of A038572) to reach fixed point.
%C a(n) = 0 when n is a fixed point of form 2^k-1 left-rotation analog appears to be same as A048881.
%F If n+1 is a power of 2 then a(n)=0 otherwise a(n) = 1 + a(floor(n/2)).
%F Conjectured g.f.: 1/(1-x) * Sum_{j>=0} x^(2^j) - (1-x^(2^j)) * Sum_{k>=1} x^((2^j)*(2^k-1)). - _Mikhail Kurkov_, Sep 29 2019
%e a(11)=3 since under right-rotation 11 -> 13 -> 14 -> 7 and 7 is a fixed point.
%t Table[Length[FixedPointList[FromDigits[RotateRight[IntegerDigits[ #,2]], 2]&, n]]-2,{n,0,110}] (* _Harvey P. Dale_, Dec 23 2011 *)
%o (Python)
%o def a(n):
%o if n<2: return 0
%o b=bin(n)[2:]
%o s=0
%o while "0" in b:
%o N=int(b[-1] + b[:-1], 2)
%o s+=1
%o b=bin(N)[2:]
%o return s
%o print([a(n) for n in range(105)]) # _Indranil Ghosh_, May 25 2017
%Y Cf. A038572, A048881.
%K base,easy,nonn
%O 0,5
%A _Marc LeBrun_, Jul 11 2001