Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #35 Jan 06 2023 15:16:35
%S 0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,1,1,0,0,0,1,0,0,
%T 0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,1,0,1,0,0,0,1,0,0,0,1,0,0,0,1,
%U 0,0,0,1,0,0,0,1,0,0,0,1,1,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1
%N a(n) = 1 if there is a prime p such that p^p divides n, otherwise 0.
%H Antti Karttunen, <a href="/A342023/b342023.txt">Table of n, a(n) for n = 1..65537</a>
%H <a href="/index/Ch#char_fns">Index entries for characteristic functions</a>.
%F a(n) = min(1, A129251(n)) = [A129251(n) > 0], where [ ] is the Iverson bracket.
%F a(n) = [A342007(n) > 1] = [A327936(n) > 1].
%F For all n >= 1,
%F a(n) <= A107078(n), i.e., a(n) = 1 => A107078(n) = 1.
%F a(n) <= A342024(n), i.e., a(n) = 1 => A342024(n) = 1.
%F a(n) <= A341999(n), i.e., a(n) = 1 => A341999(n) = 1.
%F A342004
%F For all n >= 2, a(A003415(n)) = A341996(n).
%F For all n >= 0, a(A276086(n)) = 0.
%F Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1 - Product_{p prime} (1 - 1/p^p) = 0.2780097655... . - _Amiram Eldar_, Jul 24 2022
%F a(n) = 1 - A359550(n) = A341999(n) - A359546(n). - _Antti Karttunen_, Jan 06 2023
%t Array[Function[{D, q}, Boole[Total@ Table[Count[D, _?(IntegerExponent[#, p] == p &)], {p, Prime@ Range@ q}] > 0]] @@ {Divisors[#], PrimePi@ Floor[Sqrt[#]]} &, 120] (* _Michael De Vlieger_, Mar 11 2021 *)
%o (PARI) A342023(n) = if(1==n,0,my(f = factor(n)); for(k=1, #f~, if(f[k, 2]>=f[k, 1], return(1))); (0));
%o (Python)
%o from sympy import factorint
%o def A342023(n):
%o f = factorint(n)
%o for p in f:
%o if p <= f[p]:
%o return 1
%o return 0 # _Chai Wah Wu_, Mar 09 2021
%Y Characteristic function of A100716.
%Y Cf. A003415, A008966, A048103 (positions of zeros), A107078, A276086, A341996, A341999, A327936, A341999, A342004, A342007, A359546, A359550 (one's complement).
%Y Differs from A129251 and A276077 for the first time at n=108, as here a(108) = 1.
%Y Differs from A342024 for the first time at n=625, where a(625)=0, while A342024(625)=1.
%K nonn
%O 1
%A _Antti Karttunen_, Mar 09 2021