OFFSET
1,3
COMMENTS
The first derivative of 0 and 1 is 0. The second derivative of a prime number is 0.
For all n, A003415(a(n)) is also a term of the sequence. A351255 gives the nonzero terms as ordered by their position in A276086. - Antti Karttunen, Feb 14 2022
REFERENCES
See A003415.
LINKS
T. D. Noe, Table of n, a(n) for n = 1..10000
Victor Ufnarovski and Bo Ã…hlander, How to Differentiate a Number, J. Integer Seqs., Vol. 6, 2003, #03.3.4.
FORMULA
For all n >= 0, A328309(a(n)) = n. - Antti Karttunen, Feb 14 2022
EXAMPLE
18 is on this list because the first through fifth derivatives are 21, 10, 7, 1, 0.
MATHEMATICA
dn[0]=0; dn[1]=0; dn[n_]:=Module[{f=Transpose[FactorInteger[n]]}, If[PrimeQ[n], 1, Plus@@(n*f[[2]]/f[[1]])]]; d1=Table[dn[n], {n, 40000}]; nLim=200; lst={1}; i=1; While[i<=Length[lst], currN=lst[[i]]; pre=Intersection[Flatten[Position[d1, currN]], Range[nLim]]; pre=Complement[pre, lst]; lst=Join[lst, pre]; i++ ]; Union[lst]
PROG
(PARI)
\\ The following program would get stuck in nontrivial loops. However, we assume that the conjecture 3 in Ufnarovski & Ã…hlander paper holds ("The differential equation n^(k) = n has only trivial solutions p^p for primes p").
A003415checked(n) = if(n<=1, 0, my(f=factor(n), s=0); for(i=1, #f~, if(f[i, 2]>=f[i, 1], return(0), s += f[i, 2]/f[i, 1])); (n*s));
isA099308(n) = if(!n, 1, while(n>1, n = A003415checked(n)); (n)); \\ Antti Karttunen, Feb 14 2022
CROSSREFS
Cf. A003415 (arithmetic derivative of n), A099307 (least k such that the k-th arithmetic derivative of n is zero), A099309 (complement, numbers whose k-th arithmetic derivative is nonzero for all k), A351078 (first noncomposite reached when iterating the derivative from these numbers), A351079 (the largest term on such paths).
Cf. A276086, A328116, A351255 (permutation of nonzero terms), A351257, A351259, A351261, A351072 (number of prime(k)-smooth terms > 1).
KEYWORD
nonn
AUTHOR
T. D. Noe, Oct 12 2004
STATUS
approved