login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A080343 a(n) = round(sqrt(2*n)) - floor(sqrt(2*n)). 3
0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

LINKS

Chai Wah Wu, Table of n, a(n) for n = 0..10000

FORMULA

Runs are 0^1, 0^1, 0^2 1, 0^2 1, 0^3 1^2, 0^3 1^2, 0^4 1^3, 0^4 1^3, ...

a(n) = 1 iff n >= 4 and n is in the interval [t_k + 1, ..., t_k + floor(k/2)] for some k >= 2, where t_k = k*(k+1)/2 is a triangular number.

a(n) = A023969(2*n). - Michel Marcus, Aug 19 2016

PROG

(Python)

from gmpy2 import isqrt_rem

def A080343(n):

    i, j = isqrt_rem(2*n)

    return int(4*(j-i) >= 1) # Chai Wah Wu, Aug 16 2016

CROSSREFS

Cf. A023969, A080352.

Sequence in context: A341999 A118685 A244063 * A011664 A179831 A094091

Adjacent sequences:  A080340 A080341 A080342 * A080344 A080345 A080346

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Mar 20 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 23 07:38 EDT 2021. Contains 345395 sequences. (Running on oeis4.)