login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A095799
Bell triangle A011971 squared.
1
1, 3, 4, 15, 21, 25, 107, 149, 200, 225, 1054, 1420, 1909, 2479, 2704, 13684, 17814, 23313, 30439, 38505, 41209, 224071, 283592, 360853, 461015, 587641, 727920, 769129, 4471699, 5535812, 6881856, 8590990, 10758160, 13443289, 16370471, 17139600
OFFSET
1,2
LINKS
FORMULA
Let M = the Bell triangle (A011971) as an infinite lower triangle matrix. Then T(n,k) = M^2[n,k].
EXAMPLE
T(3,2) = 21, because M = [1; 1 2; 2 3 5; ...], M^2 = [1; 3 4; 15 21 25; ...] and M^2[3,2] = 21.
Triangle begins:
: 1;
: 3, 4;
: 15, 21, 25;
: 107, 149, 200, 225;
: 1054, 1420, 1909, 2479, 2704;
: 13684, 17814, 23313, 30439, 38505, 41209;
MAPLE
with(combinat): A:= proc(n, k) option remember; `if`(k<=n, add(binomial(k, i) *bell(n-k+i), i=0..k), 0) end: M:= proc(n) option remember; Matrix(n, (i, j)-> A(i-1, j-1)) end: T:= (n, k)-> (M(n)^2)[n, k]: seq(seq(T(n, k), k=1..n), n=1..10); # Alois P. Heinz, Oct 12 2009
MATHEMATICA
max = 10; M = Table[If[k > n, 0, Sum[Binomial[k, i] BellB[n-k+i], {i, 0, k} ]], {n, 0, max-1}, {k, 0, max-1}];
T = M.M;
Table[T[[n]][[1 ;; n]], {n, 1, max}] // Flatten (* Jean-François Alcover, May 24 2016 *)
CROSSREFS
Cf. A011971. Diagonal gives A001247 for n>0.
Sequence in context: A136210 A041819 A369910 * A109926 A272514 A065942
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Jun 06 2004
EXTENSIONS
Edited, corrected and extended by Alois P. Heinz, Oct 12 2009
STATUS
approved