login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Bell triangle A011971 squared.
1

%I #17 May 24 2016 03:05:50

%S 1,3,4,15,21,25,107,149,200,225,1054,1420,1909,2479,2704,13684,17814,

%T 23313,30439,38505,41209,224071,283592,360853,461015,587641,727920,

%U 769129,4471699,5535812,6881856,8590990,10758160,13443289,16370471,17139600

%N Bell triangle A011971 squared.

%H Alois P. Heinz, <a href="/A095799/b095799.txt">Rows n = 1..45, flattened</a>

%F Let M = the Bell triangle (A011971) as an infinite lower triangle matrix. Then T(n,k) = M^2[n,k].

%e T(3,2) = 21, because M = [1; 1 2; 2 3 5; ...], M^2 = [1; 3 4; 15 21 25; ...] and M^2[3,2] = 21.

%e Triangle begins:

%e : 1;

%e : 3, 4;

%e : 15, 21, 25;

%e : 107, 149, 200, 225;

%e : 1054, 1420, 1909, 2479, 2704;

%e : 13684, 17814, 23313, 30439, 38505, 41209;

%p with(combinat): A:= proc(n, k) option remember; `if`(k<=n, add(binomial(k, i) *bell(n-k+i), i=0..k), 0) end: M:= proc(n) option remember; Matrix(n, (i, j)-> A(i-1, j-1)) end: T:= (n, k)-> (M(n)^2)[n, k]: seq(seq(T(n, k), k=1..n), n=1..10); # _Alois P. Heinz_, Oct 12 2009

%t max = 10; M = Table[If[k > n, 0, Sum[Binomial[k, i] BellB[n-k+i], {i, 0, k} ]], {n, 0, max-1}, {k, 0, max-1}];

%t T = M.M;

%t Table[T[[n]][[1 ;; n]], {n, 1, max}] // Flatten (* _Jean-François Alcover_, May 24 2016 *)

%Y Cf. A011971. Diagonal gives A001247 for n>0.

%K nonn,tabl

%O 1,2

%A _Gary W. Adamson_, Jun 06 2004

%E Edited, corrected and extended by _Alois P. Heinz_, Oct 12 2009