login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A256644
Numbers of alternating permutations where numbers at odd positions and even positions are monotone respectively.
1
1, 1, 1, 2, 5, 6, 9, 12, 21, 30, 58, 86, 176, 266, 563, 860, 1861, 2862, 6294, 9726, 21660, 33594, 75584, 117574, 266800, 416026, 950914, 1485802, 3417342, 5348882, 12369287, 19389692, 45052517, 70715342, 165002462, 259289582, 607283492, 955277402, 2244901892
OFFSET
0,4
LINKS
Ran Pan, Exercise Q, Project P
FORMULA
For n>3, a(n) = C(floor(n/2))+ C(floor((n-1)/2))+2, where C(n) is the n-th Catalan number, with a(0)=a(1)=a(2)=1 and a(3)=2.
EXAMPLE
a(5) = 6: (1,3,2,5,4), (1,4,2,5,3), (1,5,2,4,3), (3,4,2,5,1), (3,5,2,4,1), (4,5,2,3,1).
a(6) = 9: (1,3,2,5,4,6), (1,4,2,5,3,6), (1,6,2,5,3,4), (3,4,2,5,1,6), (3,6,2,5,1,4), (4,6,2,5,1,3), (4,6,3,5,1,2), (5,6,2,4,1,3), (5,6,3,4,1,2).
MAPLE
C:= n-> binomial(2*n, n)/(n+1):
a:= n-> `if`(n<4, [1$3, 2][n+1], C(iquo(n, 2))+C(iquo(n-1, 2))+2):
seq(a(n), n=0..40); # Alois P. Heinz, Apr 08 2015
MATHEMATICA
Table[Which[n < 3, 1, n == 3, 2, True, CatalanNumber[Floor[n/2]] + CatalanNumber[Floor[(n - 1)/2]] + 2], {n, 0, 38}] (* Michael De Vlieger, Apr 07 2015 *)
PROG
(PARI) C(n) = binomial(2*n, n)/(n+1);
a(n) = if (n<3, 1, if (n==3, 2, C(n\2)+ C((n-1)\2)+2)); \\ Michel Marcus, Apr 07 2015
(PARI) a(n) = if (n<4, return(max(1, n-1))); binomial(n\2*2, n\2)/(n\2+1)*if(n%2, 2, (5*n-2)/(4*n-4)) + 2 \\ Charles R Greathouse IV, Apr 07 2015
(Magma) [1, 1, 1, 2] cat [Catalan(Floor(n/2))+ Catalan(Floor((n-1)/2))+2: n in [4..40]]; // Vincenzo Librandi, Apr 08 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Ran Pan, Apr 07 2015
STATUS
approved