OFFSET
1,1
COMMENTS
The identity (648*n^2-72*n+1)^2-(9*n^2-n)*(216*n-12)^2=1 can be written as A154514(n)^2-a(n)*A154518(n)^2=1 (see also the second comment in A154514). - Vincenzo Librandi, Jan 30 2012
The continued fraction expansion of sqrt(a(n)) is [3n-1; {1, 4, 1, 6n-2}]. For n=1, this collapses to [2; {1, 4}]. - Magus K. Chu, Sep 06 2022
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..10000
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3). - Vincenzo Librandi, Jan 30 2012
G.f.: x*(-8-10*x)/(x-1)^3. - Vincenzo Librandi, Jan 30 2012
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {8, 34, 78}, 50] (* Vincenzo Librandi, Jan 30 2012 *)
PROG
(Sage) [lucas_number1(3, 3*n, n) for n in range(0, 41)] # Zerinvary Lajos, Nov 20 2009
(PARI) a(n)=9*n^2-n \\ Charles R Greathouse IV, Dec 27 2011
(Magma) I:=[8, 34, 78]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]]; // Vincenzo Librandi, Jan 30 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Jan 11 2009
STATUS
approved