login
A024847
a(n) = least m such that if r and s in {1/1, 1/3, 1/5, ..., 1/(2n-1)} satisfy r < s, then r < k/m < (k+4)/m < s for some integer k.
4
8, 34, 76, 134, 208, 298, 404, 526, 664, 818, 1009, 1198, 1427, 1651, 1918, 2176, 2481, 2773, 3116, 3442, 3823, 4183, 4602, 4996, 5453, 5881, 6376, 6838, 7371, 7867, 8438, 8969, 9578, 10207, 10791, 11458, 12145, 12781, 13506, 14251, 14939, 15722, 16525, 17265
OFFSET
2,1
COMMENTS
For a guide to related sequences, see A001000. - Clark Kimberling, Aug 12 2012
LINKS
MATHEMATICA
leastSeparatorS[seq_, s_] := Module[{n = 1},
Table[While[Or @@ (Ceiling[n #1[[1]]] <
s + 1 + Floor[n #1[[2]]] &) /@ (Sort[#1, Greater] &) /@
Partition[Take[seq, k], 2, 1], n++]; n, {k, 2, Length[seq]}]];
t = Map[leastSeparatorS[1/(2*Range[50]-1), #] &, Range[5]];
t[[5]] (* A024847 *)
(* Peter J. C. Moses, Aug 06 2012 *)
CROSSREFS
Sequence in context: A196143 A373356 A307091 * A154516 A212744 A298174
KEYWORD
nonn
STATUS
approved