login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A154519
a(n) = 216*n + 12.
3
228, 444, 660, 876, 1092, 1308, 1524, 1740, 1956, 2172, 2388, 2604, 2820, 3036, 3252, 3468, 3684, 3900, 4116, 4332, 4548, 4764, 4980, 5196, 5412, 5628, 5844, 6060, 6276, 6492, 6708, 6924, 7140, 7356, 7572, 7788, 8004, 8220, 8436, 8652
OFFSET
1,1
COMMENTS
The identity (648*n^2 + 72*n + 1)^2 - (9*n^2 + n)*(216*n + 12)^2 = 1 can be written as A154515(n)^2 - A154517(n)*a(n)^2 = 1 (see also the second comment at A154515).
FORMULA
G.f.: x*(228 - 12*x)/(x-1)^2. - Vincenzo Librandi, Jan 30 2012 [corrected by Georg Fischer, May 12 2019]
a(n) = 2*a(n-1) - a(n-2). - Vincenzo Librandi, Jan 30 2012
a(n) = 12*A161705(n). - Michel Marcus, Aug 19 2018
MATHEMATICA
LinearRecurrence[{2, -1}, {228, 444}, 50] (* Vincenzo Librandi, Jan 30 2012 *)
PROG
(PARI) a(n)=216*n+12 \\ Charles R Greathouse IV, Dec 27 2011
(Magma) I:=[228, 444]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..50]]; // Vincenzo Librandi, Jan 30 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Jan 11 2009
STATUS
approved