|
|
A172531
|
|
Number of ways to place 4 nonattacking knights on an n X n toroidal board.
|
|
5
|
|
|
0, 0, 0, 228, 600, 12357, 68796, 275888, 872532, 2344025, 5580762, 12107196, 24392446, 46261537, 83426400, 144157632, 240119696, 387393921, 607715342, 929951100
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,4
|
|
LINKS
|
|
|
FORMULA
|
a(n) = n^2*(n^6 - 54*n^4 + 1115*n^2 - 8934)/24, n>=9.
G.f.: x^4 * (192*x^13 -1728*x^12 +7452*x^11 -21238*x^10 +46658*x^9 -84582*x^8 +125397*x^7 -144875*x^6 +124920*x^5 -79904*x^4 +39969*x^3 -15165*x^2 +1452*x -228) / (x-1)^9. - Vaclav Kotesovec, Mar 25 2010
|
|
MATHEMATICA
|
CoefficientList[Series[x^3 (192 x^13 - 1728 x^12 + 7452 x^11 - 21238 x^10 + 46658 x^9 - 84582 x^8 + 125397 x^7 - 144875 x^6 + 124920 x^5 - 79904 x^4 + 39969 x^3 - 15165 x^2 + 1452 x - 228) / (x - 1)^9, {x, 0, 50}], x] (* Vincenzo Librandi, May 29 2013 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|