OFFSET
0,1
COMMENTS
The identity (1250*n^2 - 700*n + 99)^2 - (25*n^2 - 14*n + 2)*(250*n - 70)^2 = 1 can be written as A154359(n)^2 - a(n)*A154361(n)^2 = 1.
Numbers of the form (4*n-1)^2 + (3*n-1)^2. - Bruno Berselli, Dec 11 2011
From Bruno Berselli, Dec 13 2011: (Start)
r = (1/4)*(1250*(n-1)*(n-2) + 75*(2*n-3)(-1)^n + 321) with n>=0, i.e. the interleaving of A154358 and A154359 (649, 99, 99, 649, 2049, 3699,...)
s = (5/2)*(50*n+3*(-1)^n-75), the interleaving of A154360 and A154361 (-180, -70, 70, 180, 320, 430,...)
t = (1/8)*(50*(n-1)*(n-2) + 3*(2*n-3)*(-1)^n + 13), the interleaving of A154355 and A154357 (13, 2, 2, 13, 41, 74,...)
we verify that r^2 - t*s^2 = 1.
For n even we obtain (1250*n^2 - 1800*n + 649)^2 - (25*n^2 - 36*n + 13)*(250*n - 180)^2 = 1; for n odd we have the identity shown in the first comment. (End)
sqrt(A154357(n)) for n >= 1 has the continued fraction x; [1 1 1 1 2x] where x = 5n - 2 (the part in [] being repeated). - Robert Israel, May 26 2013
For n >= 1, the continued fraction expansion of sqrt(4*a(n)) is [10n-3; {4, 1, 5n-3, 1, 4, 20n-6}] - Magus K. Chu, Sep 16 2022
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..10000
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
G.f.: (2 + 7*x + 41*x^2)/(1-x)^3. - R. J. Mathar, Jan 05 2011
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3). - Vincenzo Librandi, Feb 08 2012
E.g.f.: (2 + 11*x + 25*x^2)*exp(x). - G. C. Greubel, Sep 14 2016
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {2, 13, 74}, 40] (* Vincenzo Librandi, Feb 08 2012 *)
PROG
(PARI) a(n)=25*n^2-14*n+2 \\ Charles R Greathouse IV, Dec 23 2011
(Magma) [25*n^2-14*n+2: n in [0..40]]; // Bruno Berselli, Sep 15 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Jan 08 2009
EXTENSIONS
One entry and offset corrected by R. J. Mathar, Jan 05 2011
First comment rewritten by Bruno Berselli, Dec 11 2011
STATUS
approved