login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A154359 a(n) = 1250*n^2 - 700*n + 99. 5
99, 649, 3699, 9249, 17299, 27849, 40899, 56449, 74499, 95049, 118099, 143649, 171699, 202249, 235299, 270849, 308899, 349449, 392499, 438049, 486099, 536649, 589699, 645249, 703299, 763849, 826899, 892449, 960499, 1031049 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

The identity (1250*n^2 - 700*n + 99)^2 - (25*n^2 - 14*n + 2)*(250*n - 70)^2 = 1 can be written as a(n)^2 - A154357(n)*A154361(n)^2 = 1. See also the third comment in A154357.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..10000

Index entries for linear recurrences with constant coefficients, signature (3,-3,1).

FORMULA

G.f.: (99 + 352*x + 2049*x^2)/(1-x)^3. - Bruno Berselli, Dec 13 2011

a(n) = 3*a(n-1) -3*a(n-2) +a(n-3). - Vincenzo Librandi, Feb 21 2012

E.g.f.: (99 + 550*x + 1250*x^2)*exp(x). - G. C. Greubel, Sep 15 2016

MATHEMATICA

LinearRecurrence[{3, -3, 1}, {99, 649, 3699}, 50] (* Vincenzo Librandi, Feb 21 2012 *)

PROG

(PARI) for(n=0, 40, print1(1250*n^2-700*n+99", ")); \\ Vincenzo Librandi, Feb 21 2012

(MAGMA) [1250*n^2-700*n+99: n in [0..40]]; // Bruno Berselli, Sep 15 2016

CROSSREFS

Sequence in context: A322830 A212779 A321636 * A185499 A061366 A177686

Adjacent sequences:  A154356 A154357 A154358 * A154360 A154361 A154362

KEYWORD

nonn,easy

AUTHOR

Vincenzo Librandi, Jan 08 2009

EXTENSIONS

Edited by Charles R Greathouse IV, Jul 29 2010

Librandi's comment rewritten by Bruno Berselli, Dec 13 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 12 02:23 EDT 2021. Contains 343808 sequences. (Running on oeis4.)