Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #36 Sep 08 2022 08:44:56
%S 0,2,4,5,6,8,10,11,12,14,16,17,18,20,22,23,24,26,28,29,30,32,34,35,36,
%T 38,40,41,42,44,46,47,48,50,52,53,54,56,58,59,60,62,64,65,66,68,70,71,
%U 72,74,76,77,78,80,82,83,84,86,88,89,90,92,94,95,96,98
%N Numbers that are congruent to {0, 2, 4, 5} mod 6.
%C The sequence is the interleaving of A047233 with A016789(n-1). - _Guenther Schrack_, Feb 14 2019
%H G. C. Greubel, <a href="/A047262/b047262.txt">Table of n, a(n) for n = 1..10000</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (2,-2,2,-1).
%H <a href="/index/Tu#2wis">Index entries for two-way infinite sequences</a>.
%F From _R. J. Mathar_, Oct 08 2011: (Start)
%F G.f.: x^2*(2+x^2) / ( (1+x^2)*(1-x)^2 ).
%F a(n) = 3*n/2 - 1 - sin(Pi*n/2)/2. (End)
%F From _Wesley Ivan Hurt_, May 21 2016: (Start)
%F a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - a(n-4) for n > 4.
%F a(n) = (6*n - 4 - i^(1-n) + i^(1+n))/4, where i = sqrt(-1).
%F a(2*n) = A016789(n-1) for n>0, a(2*n-1) = A047233(n).
%F a(2-n) = - A047237(n), a(n-1) = A047273(n) - 1 for n > 1. (End)
%F From _Guenther Schrack_, Feb 14 2019: (Start)
%F a(n) = (6*n - 4 - (1 - (-1)^n)*(-1)^(n*(n-1)/2))/4.
%F a(n) = a(n-4) + 6, a(1)=0, a(2)=2, a(3)=4, a(4)=5, for n > 4. (End)
%F Sum_{n>=2} (-1)^n/a(n) = log(3)/4 + log(2)/3 - sqrt(3)*Pi/36. - _Amiram Eldar_, Dec 17 2021
%p A047262:=n->(6*n-4-I^(1-n)+I^(1+n))/4: seq(A047262(n), n=1..100); # _Wesley Ivan Hurt_, May 21 2016
%t Select[Range[0,100], MemberQ[{0,2,4,5}, Mod[#,6]]&] (* or *) LinearRecurrence[{2,-2,2,-1}, {0,2,4,5}, 70] (* _Harvey P. Dale_, Dec 09 2015 *)
%o (Magma) [n : n in [0..100] | n mod 6 in [0, 2, 4, 5]]; // _Wesley Ivan Hurt_, May 21 2016
%o (PARI) my(x='x+O('x^70)); concat([0], Vec(x^2*(2+x^2)/((1+x^2)*(1-x)^2))) \\ _G. C. Greubel_, Feb 16 2019
%o (Sage) a=(x^2*(2+x^2)/((1+x^2)*(1-x)^2)).series(x, 72).coefficients(x, sparse=False); a[1:] # _G. C. Greubel_, Feb 16 2019
%Y Cf. A016789, A047233, A047237, A047273.
%Y Complement: A047241.
%K nonn,easy
%O 1,2
%A _N. J. A. Sloane_
%E More terms from _Wesley Ivan Hurt_, May 21 2016