login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A334014
Array read by antidiagonals: T(n,k) is the number of functions f: X->Y, where X is a subset of Y, |X| = n, |Y| = n+k, such that for every x in X, f(f(x)) != x.
1
1, 1, 0, 1, 1, 0, 1, 2, 3, 2, 1, 3, 8, 18, 30, 1, 4, 15, 52, 163, 444, 1, 5, 24, 110, 478, 1950, 7360, 1, 6, 35, 198, 1083, 5706, 28821, 138690, 1, 7, 48, 322, 2110, 13482, 83824, 505876, 2954364, 1, 8, 63, 488, 3715, 27768, 203569, 1461944, 10270569, 70469000, 1, 9, 80, 702, 6078, 51894, 436656, 3618540, 29510268, 236644092, 1864204416, 1, 10, 99, 970, 9403, 90150, 854485, 8003950, 74058105, 676549450, 6098971555, 54224221050
OFFSET
0,8
COMMENTS
Comes up in the study of the Zen Stare game (see description at A134362).
T(k,n-k)*binomial(n,k)*(n-k-1)!! is the number of different possible Zen Stare rounds with n starting players and k winners.
LINKS
FORMULA
T(n,k) = Sum_{i=0..n} k^(n-i)*binomial(n,i)*T(i,n-i); This means that with a constant n, T(n,k) is a polynomial of k.
T(n,0) = A134362(n).
T(0,k) = 1.
For odd n, Sum_{k=1..(n+1)/2} T(2*k-1,n-2*k+1)*binomial(n,2*k-1)*(n-2*k)!! = (n-1)^n.
E.g.f. of k-th column: exp((k-1)*W(x) - W(x)^2/2)/(1-W(x)) where W(x) is the e.g.f. of A000169. - Andrew Howroyd, Apr 15 2020
EXAMPLE
Array begins:
=======================================================
n\k | 0 1 2 3 4 5 6
----+--------------------------------------------------
0 | 1 1 1 1 1 1 1 ...
1 | 0 1 2 3 4 5 6 ...
2 | 0 3 8 15 24 35 48 ...
3 | 2 18 52 110 198 322 488 ...
4 | 30 163 478 1083 2110 3715 6078 ...
5 | 444 1950 5706 13482 27768 51894 90150 ...
6 | 7360 28821 83824 203569 436656 854485 1557376 ...
...
T(2,2) = 8; This because given X = {A,B}, Y = {A,B,C,D}. The only functions f: X->Y that meet the requirement are:
f(A) = C, f(B) = C
f(A) = D, f(B) = D
f(A) = D, f(B) = C
f(A) = C, f(B) = D
f(A) = B, f(B) = C
f(A) = B, f(B) = D
f(A) = C, f(B) = A
f(A) = D, f(B) = A
PROG
(PARI) T(n, k)={my(w=-lambertw(-x + O(x^max(4, 1+n)))); n!*polcoef(exp((k-1)*w - w^2/2)/(1-w), n)} \\ Andrew Howroyd, Apr 15 2020
CROSSREFS
Rows n=0..3 are A000012, A001477, A005563, A058794.
Columns k=0..4 are A134362, A089466, A089467, A089468, A220690(n+2).
Sequence in context: A303868 A060475 A168069 * A280929 A231725 A106559
KEYWORD
nonn,tabl
AUTHOR
Mason C. Hart, Apr 14 2020
STATUS
approved