login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A134362
a(n) is the number of functions f:X->X, where |X| = n, such that for every x in X, f(f(x)) != x (i.e., the square of the function has no fixed points; note this implies that the function has no fixed points).
4
1, 0, 0, 2, 30, 444, 7360, 138690, 2954364, 70469000, 1864204416, 54224221050, 1721080885480, 59217131089908, 2195990208122880, 87329597612123594, 3707783109757616400, 167411012044894728720, 8010372386879991018496, 404912918159552083622130
OFFSET
0,4
COMMENTS
This sequence arose when analyzing the Zen Stare game. This game is played with a group of people standing in a circle. They start heads bowed and then everyone raises their heads simultaneously and looks at someone else in the circle. If no two people are looking at each other a Zen Stare is achieved.
REFERENCES
Mohammad K. Azarian, On the Fixed Points of a Function and the Fixed Points of its Composite Functions, International Journal of Pure and Applied Mathematics, Vol. 46, No. 1, 2008, pp. 37-44. Mathematical Reviews, MR2433713 (2009c:65129), March 2009. Zentralblatt MATH, Zbl 1160.65015.
Mohammad K. Azarian, Fixed Points of a Quadratic Polynomial, Problem 841, College Mathematics Journal, Vol. 38, No. 1, January 2007, p. 60. Solution published in Vol. 39, No. 1, January 2008, pp. 66-67.
LINKS
P. Flajolet and R. Sedgewick, Analytic Combinatorics, Cambridge University Press, 2009, page 130.
FORMULA
See Maple code.
E.g.f.: exp(-T(x)-T(x)^2/2)/(1-T(x)) where T(x) is the e.g.f. for A000169. - Geoffrey Critzer, Feb 06 2012
a(n) ~ exp(-3/2) * n^n. - Vaclav Kotesovec, Aug 16 2013
a(n) = n!*Sum_{q=0..floor(n/2)} ((-1)^q/(2^q q!) * (n-1)^(n-2q)/(n-2q)!). - Marko Riedel, Mar 08 2016
EXAMPLE
a(3) = 2 because given a three-element set X:= {A, B, C} the only functions whose square has no fixed points are f:X->X where f(A)=B, f(B)=C, f(C)=A and g:X->X where g(A)=C, g(B)=A, g(C)=B.
MAPLE
a:= n -> (n-1)^n + add((-1)^i*mul(binomial(n-2*(j-1), 2), j=1..i)*(n-1)^(n-2*i)/i!, i=1..floor(n/2)): seq(a(n), n=0..20);
MATHEMATICA
nn = 20; t = Sum[n^(n - 1) x^n/n!, {n, 1, nn}]; Drop[Range[0, nn]! CoefficientList[Series[Exp[-t - t^2/2]/(1 - t), {x, 0, nn}], x], 1] (* Geoffrey Critzer, Feb 06 2012 *)
PROG
(PARI) a(n) = n!*sum(q=0, n\2, ((-1)^q/(2^q*q!)*(n-1)^(n-2*q)/(n-2*q)!)); \\ Michel Marcus, Mar 09 2016
CROSSREFS
Sequence in context: A060042 A217855 A285298 * A296980 A219706 A318477
KEYWORD
nonn
AUTHOR
Adam Day (adam.r.day(AT)gmail.com), Jan 17 2008
STATUS
approved