login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A219706
Total number of nonrecurrent elements in all functions f:{1,2,...,n}->{1,2,...,n}.
2
0, 0, 2, 30, 456, 7780, 150480, 3279234, 79775360, 2146962024, 63397843200, 2039301671110, 71007167075328, 2661561062560140, 106874954684266496, 4577827118698118250, 208369657238965616640, 10044458122057793060176, 511225397403604416921600
OFFSET
0,3
COMMENTS
x in {1,2,...,n} is a recurrent element if there is some k such that f^k(x) = x where f^k(x) denotes iterated functional composition. In other words, a recurrent element is in a cycle of the functional digraph. An element that is not recurrent is a nonrecurrent element.
LINKS
FORMULA
E.g.f.: T(x)^2/(1-T(x))^3 where T(x) is the e.g.f. for A000169.
a(n) = Sum_{k=1..n-1} A219694(n,k)*k.
a(n) = n^(n+1) - A063169(n).
MAPLE
b:= proc(n) option remember; `if`(n=0, [1, 0], add((p->p+
[0, p[1]*j])((j-1)!*b(n-j)*binomial(n-1, j-1)), j=1..n))
end:
a:= n-> (p-> n*p[1]-p[2])(add(b(j)*n^(n-j)
*binomial(n-1, j-1), j=0..n)):
seq(a(n), n=0..25); # Alois P. Heinz, May 22 2016
MATHEMATICA
nn=20; f[list_] := Select[list, #>0&]; t=Sum[n^(n-1)x^n y^n/n!, {n, 1, nn}]; Range[0, nn]! CoefficientList[Series[D[1/(1-x Exp[t]), y]/.y->1, {x, 0, nn}], x]
PROG
(Python)
from math import comb
def A219706(n): return (n-1)*n**n-(sum(comb(n, k)*(n-k)**(n-k)*k**k for k in range(1, (n+1>>1)))<<1) - (0 if n&1 else comb(n, m:=n>>1)*m**n) if n else 0 # Chai Wah Wu, Apr 26 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Geoffrey Critzer, Nov 25 2012
STATUS
approved