login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A063169
a(n) = n*A001865(n).
7
1, 6, 51, 568, 7845, 129456, 2485567, 54442368, 1339822377, 36602156800, 1099126705611, 35986038303744, 1275815323139149, 48693140873545728, 1990581237014772375, 86778247940387209216, 4018626330009931930833, 197009947951733259436032, 10193206233792610863520867
OFFSET
1,2
COMMENTS
Schenker sums without n-th term.
a(n)/n^n = Q(n) (called Ramanujan's function by Knuth).
Urn, n balls, with replacement: how many selections before a ball is chosen that was chosen already? Expected value is a(n)/n^n.
a(n) is the total number of recurrent elements over all endofunctions on n labeled points. a(n) = Sum_{k=1..n} A066324(n,k)*k. - Geoffrey Critzer, Dec 05 2011
REFERENCES
D. E. Knuth, The Art of Computer Programming, 3rd ed. 1997, Vol. 1, Addison-Wesley, Reading, MA, 1.2.11.3 p. 116
LINKS
Marijke van Gans, Schenker sums
Don Zagier, Partitions, Modular Forms and Moduli Spaces, Youtube video of a lecture at Institut Henri Poincaré, Feb 28 2017.
FORMULA
a(n) = Sum_{k=0..n-1} n^k * n!/k!.
a(n)/n! = Sum_{k=0..n-1} n^k/k! (first n terms of e^n power series).
E.g.f.: T/(1-T)^2, where T=T(x) is Euler's tree function (see A000169) - Len Smiley, Nov 28 2001
E.g.f.: -LambertW(-x)/(1+LambertW(-x))^2. - Alois P. Heinz, Nov 16 2011
a(n) = A063170(n) - n^n.
a(n) = Sum_{k=1..n} C(n,k) * (n-k)^(n-k) * k^k. - Paul D. Hanna, Jul 04 2013
a(n) ~ n^(n+1/2)*sqrt(Pi/2). - Vaclav Kotesovec, Oct 05 2013
a(n) = Sum_{k=1..n} (n!/(n-k)!) * k^2 * n^(n-k-1). - Brian P Hawkins, Feb 07 2024
EXAMPLE
a(4) = (1*2*3*4) + 4*(2*3*4) + 4*4*(3*4) + 4*4*4*(4) = 568.
MATHEMATICA
Flatten[Range[0, 20]! CoefficientList[Series[D[1/(1 - y t), y] /. y -> 1, {x, 0, 20}], {x, y}]]
(* Second program: *)
a[n_] := Exp[n]*Gamma[n+1, n] - n^n; Array[a, 19] (* Jean-François Alcover, Jan 25 2018 *)
PROG
(UBASIC)
10 for N=1 to 42 : T=N^N : S=0
20 for K=N to 1 step -1 : T/=N : T*=K : S+=T : next K
30 print N, S : next N
(PARI) a(n)=sum(k=1, n, binomial(n, k)*n^(n-k)*k!) /* Michael Somos, Jun 09 2004 */
(PARI) a(n)=sum(k=1, n, binomial(n, k)*(n-k)^(n-k)*k^k) \\ Paul D. Hanna, Jul 04 2013
(PARI) a(n)=sum(k=0, n-1, n!/k!*n^k) \\ Ruud H.G. van Tol, Jan 14 2023
(Python)
from math import comb
def A063169(n): return (sum(comb(n, k)*(n-k)**(n-k)*k**k for k in range(1, (n+1>>1)))<<1) + (0 if n&1 else comb(n, m:=n>>1)*m**n) + n**n # Chai Wah Wu, Apr 25-26 2023
CROSSREFS
KEYWORD
nonn,easy,nice
AUTHOR
Marijke van Gans (marijke(AT)maxwellian.demon.co.uk)
STATUS
approved