login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A246189
Number of endofunctions on [n] where the smallest cycle length equals 2.
2
1, 6, 51, 580, 8265, 141246, 2810437, 63748728, 1622579985, 45775778950, 1417347491241, 47776074289164, 1741386177576409, 68238497945688630, 2860625245955274225, 127736893134458097136, 6052712065187733972513, 303322427195785592735502, 16028016368907840953165425
OFFSET
2,2
LINKS
FORMULA
a(n) ~ (exp(-1) - exp(-3/2)) * n^n. - Vaclav Kotesovec, Aug 21 2014
MAPLE
with(combinat):
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i>n, 0,
add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!*
b(n-i*j, i+1), j=0..n/i)))
end:
A:= (n, k)-> add(binomial(n-1, j-1)*n^(n-j)*b(j, k), j=0..n):
a:= n-> A(n, 2) -A(n, 3):
seq(a(n), n=2..25);
MATHEMATICA
multinomial[n_, k_List] := n!/Times @@ (k!);
b[n_, i_] := b[n, i] = If[n==0, 1, If[i>n, 0, Sum[(i - 1)!^j multinomial[ n, Join[{n - i*j}, Table[i, {j}]]]/j! b[n - i*j, i + 1], {j, 0, n/i}]]];
A[n_, k_] := Sum[Binomial[n - 1, j - 1] n^(n - j) b[j, k], {j, 0, n}];
a[n_] := A[n, 2] - A[n, 3];
a /@ Range[2, 25] (* Jean-François Alcover, Dec 28 2020, after Alois P. Heinz *)
CROSSREFS
Column k=2 of A246049.
Sequence in context: A113352 A063169 A346667 * A293128 A304185 A215003
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 18 2014
STATUS
approved