OFFSET
0,3
COMMENTS
Inverse binomial transform of A002296.
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..500
FORMULA
G.f. A(x) satisfies: A(x) = 1 / (1 + x) + x * (1 + x)^5 * A(x)^7.
G.f.: Sum_{k>=0} ( binomial(7*k,k) / (6*k + 1) ) * x^k / (1 + x)^(k+1).
a(n) ~ 776887^(n + 3/2) / (282475249 * sqrt(Pi) * n^(3/2) * 2^(6*n + 2) * 3^(6*n + 3/2)). - Vaclav Kotesovec, Jul 30 2021
MATHEMATICA
Table[Sum[(-1)^(n - k) Binomial[n, k] Binomial[7 k, k]/(6 k + 1), {k, 0, n}], {n, 0, 20}]
nmax = 20; A[_] = 0; Do[A[x_] = 1/(1 + x) + x (1 + x)^5 A[x]^7 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
nmax = 20; CoefficientList[Series[Sum[(Binomial[7 k, k]/(6 k + 1)) x^k/(1 + x)^(k + 1), {k, 0, nmax}], {x, 0, nmax}], x]
Table[(-1)^n HypergeometricPFQ[{1/7, 2/7, 3/7, 4/7, 5/7, 6/7, -n}, {1/3, 1/2, 2/3, 5/6, 1, 7/6}, 823543/46656], {n, 0, 20}]
PROG
(PARI) a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n, k)*binomial(7*k, k)/(6*k + 1)); \\ Michel Marcus, Jul 28 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jul 27 2021
STATUS
approved