login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A346667 a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * binomial(7*k,k) / (6*k + 1). 9
1, 0, 6, 51, 578, 7011, 89931, 1198798, 16445122, 230643888, 3292247673, 47672499727, 698569117499, 10339672571689, 154357100458366, 2321475460350492, 35140713973159266, 534971413383669580, 8185501429052369700, 125811555778930237392, 1941590759206061655069 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Inverse binomial transform of A002296.

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..500

FORMULA

G.f. A(x) satisfies: A(x) = 1 / (1 + x) + x * (1 + x)^5 * A(x)^7.

G.f.: Sum_{k>=0} ( binomial(7*k,k) / (6*k + 1) ) * x^k / (1 + x)^(k+1).

a(n) ~ 776887^(n + 3/2) / (282475249 * sqrt(Pi) * n^(3/2) * 2^(6*n + 2) * 3^(6*n + 3/2)). - Vaclav Kotesovec, Jul 30 2021

MATHEMATICA

Table[Sum[(-1)^(n - k) Binomial[n, k] Binomial[7 k, k]/(6 k + 1), {k, 0, n}], {n, 0, 20}]

nmax = 20; A[_] = 0; Do[A[x_] = 1/(1 + x) + x (1 + x)^5 A[x]^7 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]

nmax = 20; CoefficientList[Series[Sum[(Binomial[7 k, k]/(6 k + 1)) x^k/(1 + x)^(k + 1), {k, 0, nmax}], {x, 0, nmax}], x]

Table[(-1)^n HypergeometricPFQ[{1/7, 2/7, 3/7, 4/7, 5/7, 6/7, -n}, {1/3, 1/2, 2/3, 5/6, 1, 7/6}, 823543/46656], {n, 0, 20}]

PROG

(PARI) a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n, k)*binomial(7*k, k)/(6*k + 1)); \\ Michel Marcus, Jul 28 2021

CROSSREFS

Cf. A002296, A005043, A346628, A346649, A346664, A346665, A346666, A346668.

Sequence in context: A000405 A113352 A063169 * A246189 A293128 A304185

Adjacent sequences:  A346664 A346665 A346666 * A346668 A346669 A346670

KEYWORD

nonn

AUTHOR

Ilya Gutkovskiy, Jul 27 2021

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 7 12:47 EDT 2022. Contains 355148 sequences. (Running on oeis4.)