login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A346665
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * binomial(5*k,k) / (4*k + 1).
10
1, 0, 4, 22, 172, 1409, 12216, 109904, 1016876, 9614584, 92490261, 902364918, 8907507708, 88802649446, 892833960460, 9042639746819, 92171773008828, 944819352291920, 9733592874215112, 100725697334689896, 1046535959932600141, 10913073121311627481, 114175868855824821752
OFFSET
0,3
COMMENTS
Inverse binomial transform of A002294.
LINKS
FORMULA
G.f. A(x) satisfies: A(x) = 1 / (1 + x) + x * (1 + x)^3 * A(x)^5.
G.f.: Sum_{k>=0} ( binomial(5*k,k) / (4*k + 1) ) * x^k / (1 + x)^(k+1).
a(n) ~ 2869^(n + 3/2) / (78125 * sqrt(Pi) * n^(3/2) * 2^(8*n + 7/2)). - Vaclav Kotesovec, Jul 30 2021
D-finite with recurrence 8*n*(4*n+1)*(2*n-1)*(4*n-1)*a(n) -(n-1) *(1845*n^3 -1333*n^2 -238*n +240)*a(n-1) -4*(n-1) *(2485*n^3 -7263*n^2 +7388*n -2580) *a(n-2) -2*(n-1) *(n-2) *(8095*n^2 -24029*n +18924) *a(n-3) -4*(n-1) *(n-2) *(n-3) *(2805*n -5578) *a(n-4) -2869*(n-1) *(n-2) *(n-3) *(n-4) *a(n-5)=0. - R. J. Mathar, Aug 17 2023
MAPLE
A346665 := proc(n)
add((-1)^(n-k)*binomial(n, k)*binomial(5*k, k)/(4*k+1), k=0..n) ;
end proc:
seq(A346665(n), n=0..80); # R. J. Mathar, Aug 17 2023
MATHEMATICA
Table[Sum[(-1)^(n - k) Binomial[n, k] Binomial[5 k, k]/(4 k + 1), {k, 0, n}], {n, 0, 22}]
nmax = 22; A[_] = 0; Do[A[x_] = 1/(1 + x) + x (1 + x)^3 A[x]^5 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
nmax = 22; CoefficientList[Series[Sum[(Binomial[5 k, k]/(4 k + 1)) x^k/(1 + x)^(k + 1), {k, 0, nmax}], {x, 0, nmax}], x]
Table[(-1)^n HypergeometricPFQ[{1/5, 2/5, 3/5, 4/5, -n}, {1/2, 3/4, 1, 5/4}, 3125/256], {n, 0, 22}]
PROG
(PARI) a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n, k)*binomial(5*k, k)/(4*k + 1)); \\ Michel Marcus, Jul 28 2021
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jul 27 2021
STATUS
approved