login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A353186 Expansion of e.g.f. 1/(1 - Sum_{k>=1} d(k) * x^k / k), where d(n) = number of divisors of n (A000005). 0
1, 1, 4, 22, 170, 1588, 18236, 240840, 3662424, 62456136, 1185150768, 24714979584, 562659843984, 13870798275072, 368324715871680, 10478253239415552, 317975367247809408, 10252138622419702656, 349999438215928660992, 12612365665457524786944, 478414908509124826439424 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
LINKS
FORMULA
a(0) = 1; a(n) = Sum_{k=1..n} A318249(k) * binomial(n,k) * a(n-k).
MATHEMATICA
d[k_] := d[k] = DivisorSigma[0, k]; a[0] = 1; a[n_] := a[n] = Sum[(k - 1)! * d[k] * Binomial[n, k] * a[n - k], {k, 1, n}]; Array[a, 21, 0] (* Amiram Eldar, Apr 30 2022 *)
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-sum(k=1, N, numdiv(k)*x^k/k))))
(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, (j-1)!*numdiv(j)*binomial(i, j)*v[i-j+1])); v;
CROSSREFS
Sequence in context: A363115 A368285 A350268 * A346665 A340332 A207654
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Apr 29 2022
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 23 04:31 EST 2024. Contains 370267 sequences. (Running on oeis4.)